

Continuous
Live Monitoring of
Machine Learning
Models with Delayed
Label Feedback

Patrick Baier Lorand Dali

Zalando Payments

OUTLINE

Who we are and what we do
Why we should monitor
Prediction Monitoring
Our implementation

WHO WE ARE AND WHAT WE DO

WHO WE ARE

Patrick Baier

- Data Scientist at Zalando (~ 3.5 years)
- PhD in Computer Science from Uni Stuttgart

/ Sen

Lorand Dali

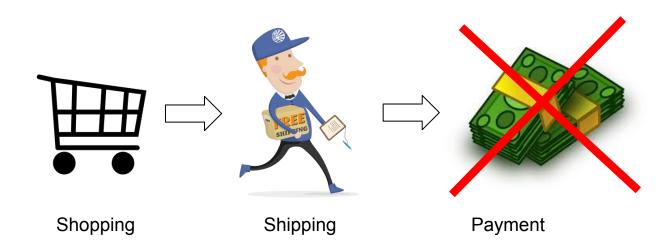
- Data Scientist at Zalando (~ 1.5 years)
- Diploma in Computer Science from the Technical University of Cluj Napoca

WHAT WE DO

Detect and prevent payment fraud

WHAT WE DO

Detect and prevent payment fraud



MODEL TRAINING

RUNTIME SYSTEM

- REST service
- Scala Play service with Spark bindings
- Response time: <1 second

OUR TECH STACK

WHY WE SHOULD MONITOR

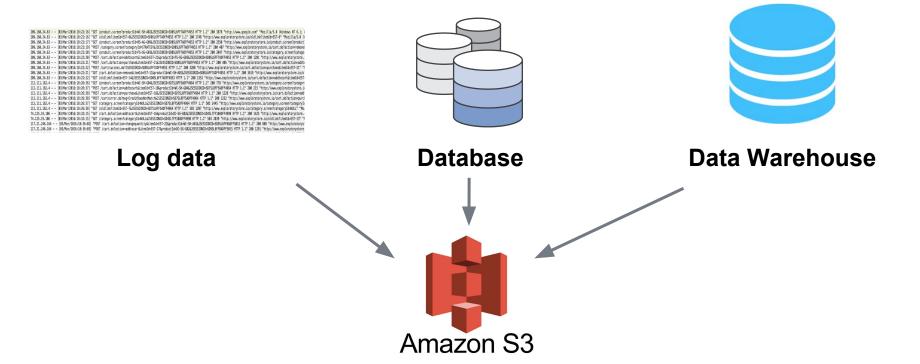
SCENARIO

Let's deploy a model for fraud detection in an online shop!

Steps we take:

- 1. Collect training data.
- 2. Train a model.
- 3. Deploy it to production.

COLLECT DATA



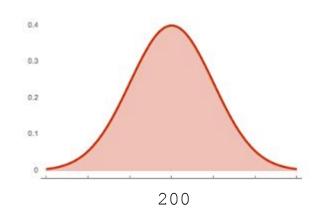
Go through the systems and collect data for training

TRAINING DATA

Label	Feature-N	 Time-to-order [s]	Feature-1	#
not-frauc	1	 300	2	1
fraud	0	 5	1	2
not-frauc	0	 120	3	3
not-frauc	1	 200	2	4
fraud	0	 250	1	5
•••		 		

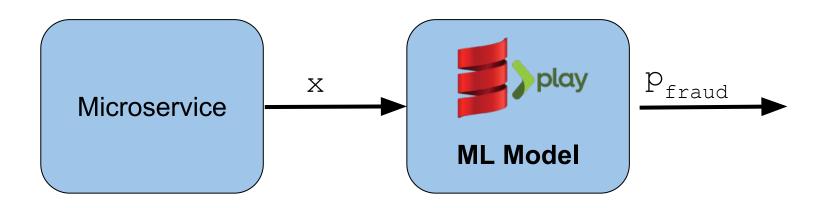
FEATURE DISTRIBUTION

Time-to-order [s]
300
5
120
200
250



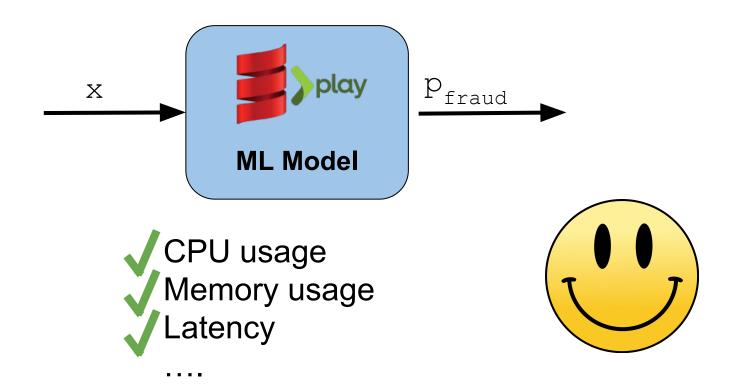
Distribution of feature in training data

GO LIVE



Once we are live, we get features x sent over by a different microservice in real-time.

MONITORING

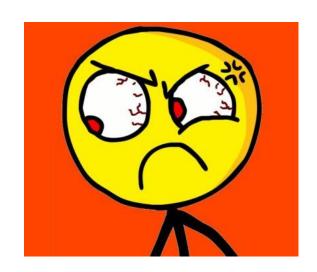


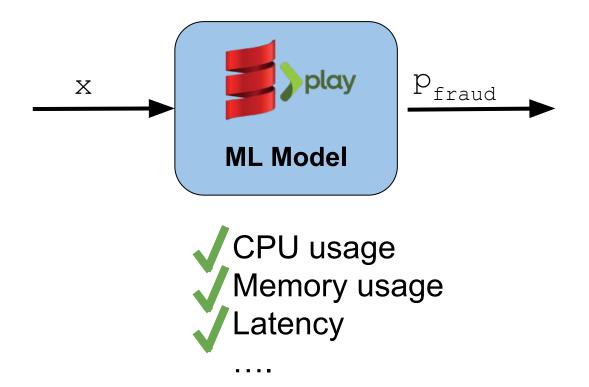
CHANGE OF MOODS

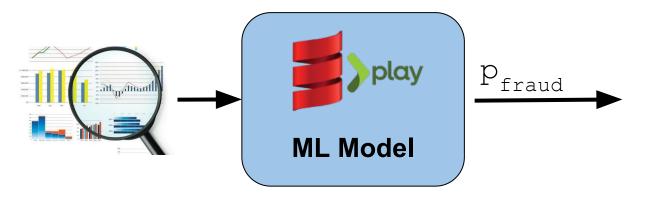
Some weeks later, people are angry:

"We fail to detect fraud, our business is ruined!"

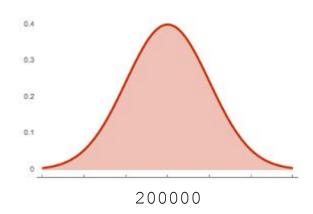
What happened?

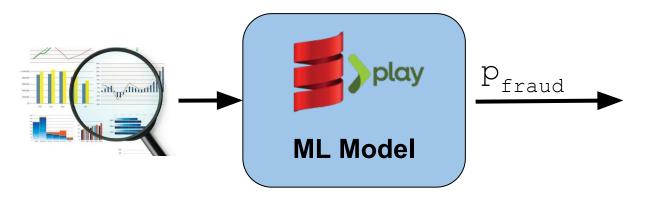




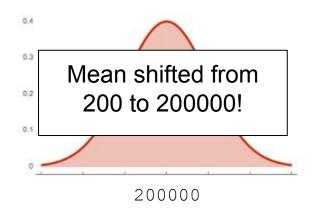


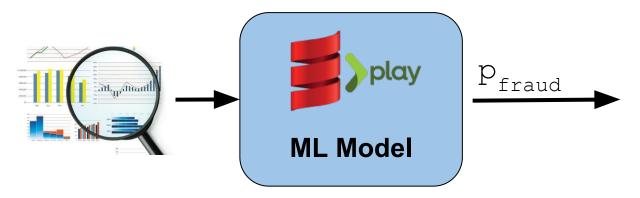
Time-to-order			
300000			
5000			
120000			





Time-to-order		
300000		
5000		
120000		



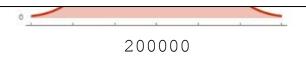


0.4

Time-to-order			
300000			
5000			
120000			

The feature is sent to us in the unit of milliseconds (not in seconds)!

→ All our predictions are corrupt!



PROBLEMS

- 1. We lost a lot of money.
- 2. We did not detect it in time.
- 3. We could have detected it in time and provided a fix.

CONCLUSIONS

We need to make sure that the distributions of input features are (always) the same as in training.

PREDICTION MONITORING

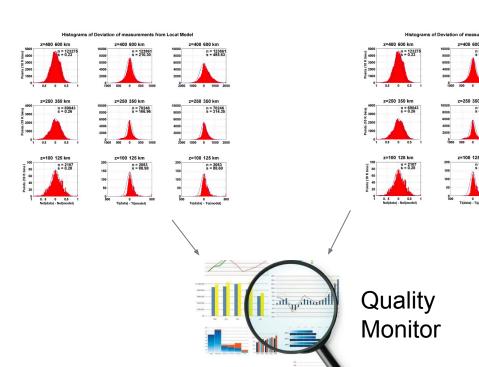
FAILING FEATURES

Monitor failing input features:

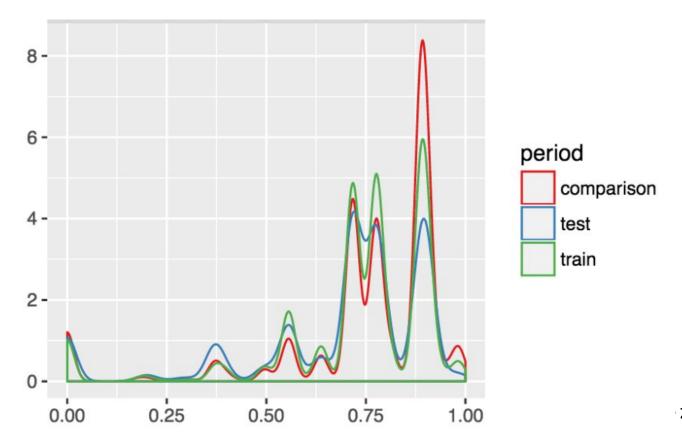
feature name	fraction	
feature one	0.903	
feature two	0.004	
feature three	0.004	
feature four	0.004	

Compare feature distributions and output probability:

Feature distribution on test data



Feature distribution on live data

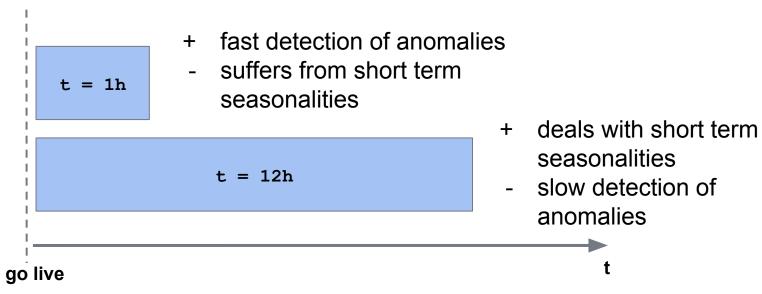


Compare distributions with KS-distance:

feature name	this vs previous	this vs test	previous vs test
feature one	0.000008	0.928806	0.928798
feature two	0.0009117	0.019504	0.020416
feature three	0.1075305	0.316970	0.313337
feature four	0.943896	0.943655	0.045654
prediction	6.606939e-02	0.255182	0.277325

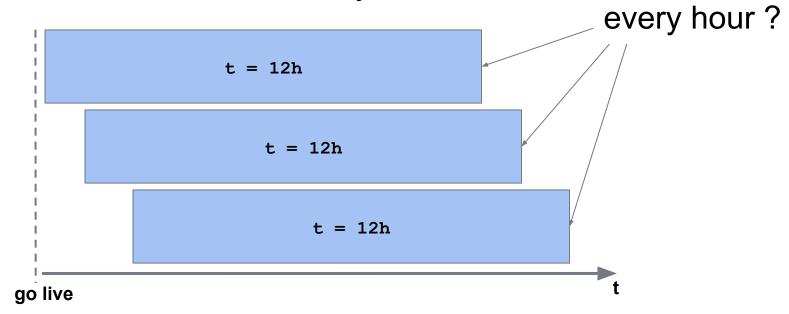
WINDOWS SIZE

How big should the window size for data aggregation be?



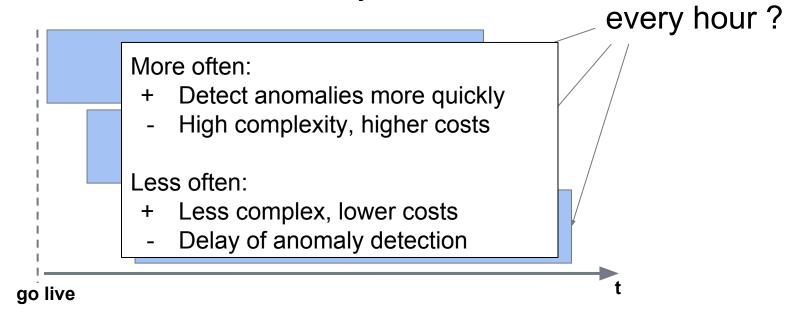
EXECUTION SCHEDULE

How often should we analyze?



EXECUTION SCHEDULE

How often should we analyze?

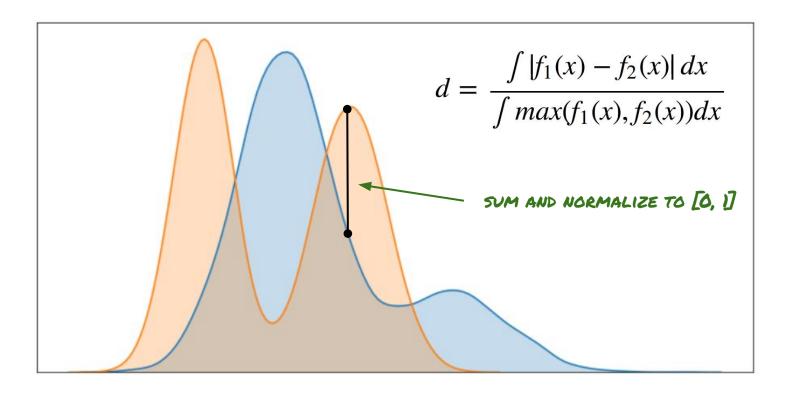


possible discoveries

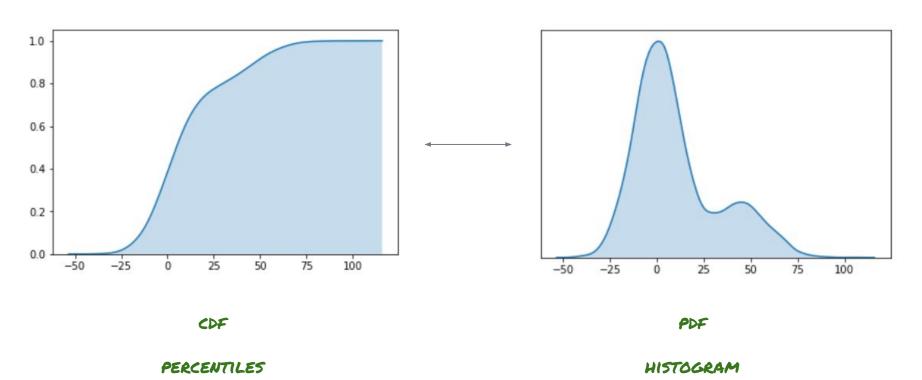
technical problems,
seasonalities,
change of behaviour,
fraud wave,
fraud patterns,
deviation from expectations.

IMPLEMENTATION

DISTANCE BETWEEN TWO DISTRIBUTIONS



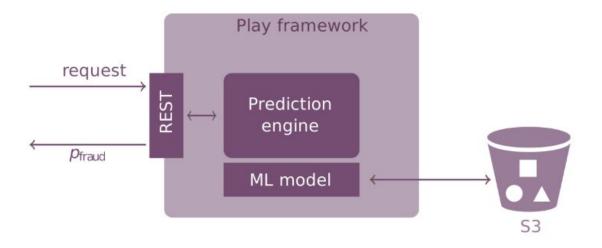
WE USE THE CDF



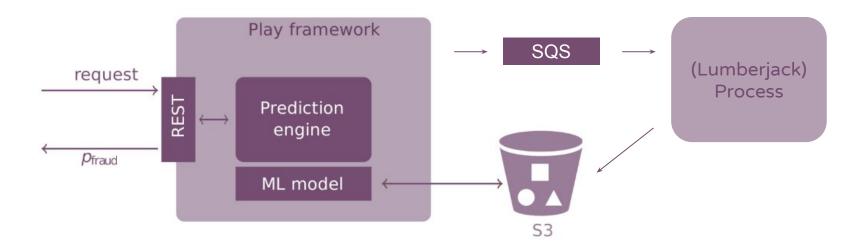
USING TDIGEST TO OBTAIN CDF

```
import com.tdunning.math.stats.TDigest
import org.apache.spark.rdd.RDD
                                                            FROM AN IN-MEMORY COLLECTION
def create(numbers: Seq[Double]): TDigest = {
    val digest: TDigest = TDigest.createDigest(100)
    numbers.foreach(x \Rightarrow digest.add(x))
    digest
def create(numbers: RDD[Double]): TDigest = {
                                                            FROM A DISTRIBUTED COLLECTION
    val empty: TDigest = TDigest.createDigest(100)
    numbers.treeAggregate(empty)(
      seqOp = (acc: TDigest, x: Double) => {
          acc.add(x)
          acc
      combOp = (digest1: TDigest, digest2: TDigest) => {
          digest1.add(digest2)
          digest1
                                                                               zalando
```

PREDICTION SERVING



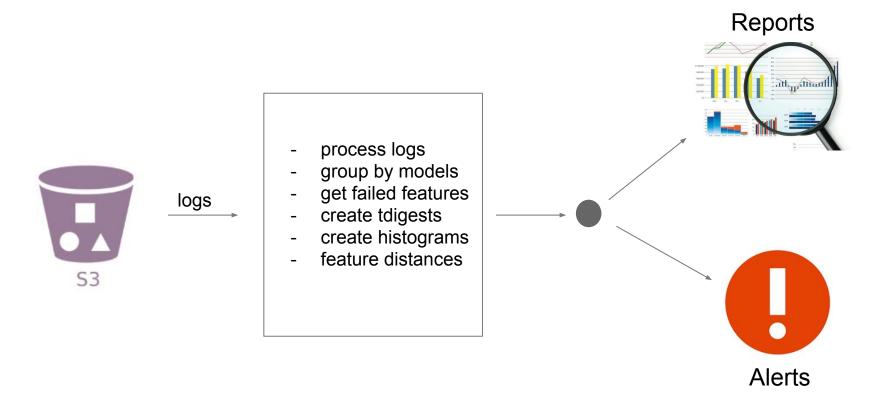
PREDICTION SERVING



PROCESSING THE SQS MESSAGES

```
func process(sqsClient sqsiface.SQSAPI, dumpSize int,
    interrupt <- chan bool, upload func([]*sqs.Message)) {</pre>
        buffer := make([]*sqs.Message, 0, dumpSize)
        timer := time.NewTimer(maxFetchingTime)
        for {
            select {
                case <-interrupt:</pre>
                     return
                case <-timer.C:</pre>
                     upload(buffer)
                default:
                     for , message := range receiveMessages(sqsClient) {
                         buffer = append(buffer, message)
                     if len(buffer) == dumpSize {
                         upload(buffer)
```

PUTTING IT TOGETHER IN AWS DATA PIPELINE



FINAL NOTES

- if you have a ML system deployed in production, then you have to monitor it somehow
- monitoring is especially important if performance feedback is delayed
- start simple and non-intrusive, keep the reports flexible
- automate as much as possible
- to measure how far you are with monitoring, go through the questions in this paper from Google: "What's your ML Test Score? A rubric for ML production systems"

THANK YOU!

Patrick Baier & Lorand Dali

https://tech.zalando.com/blog/scalable-fraud-detection-fashion-platform