
Practical Use-Cases of Solr's AutoScaling 
Framework

Varun Thacker 
Lucidworks Inc.



�2

Overview 

AutoScaling Policies and Preferences 

AutoScaling API 

Triggers and Listeners



Autoscale a Solr Cluster to a trillion documents with 
minimal human intervention



Why Auto-Scaling ?

• Operations is hard to scale 
• It’s time consuming 
• Tough to build expertise  
• Tooling is required  



In a nutshell

• Provide my cluster assumptions and constraints 
• Define constraints in terms of Disk / CPU / Search 

latency / Update throughput 

Auto-Scaling helps you with : 

• Which operations can take us to the desired state? 
• When to perform those operations? 



Describing your cluster

Define the layout and characteristics of the cluster e.g. 
• All replicas must be on unique nodes 
• All replicas of each shard must be on the same rack 
• At least 2 replicas of each shard must be on the same 

rack 
• No replicas should be added to a node that already has 

4 Solr cores



Describing your cluster

We must also define the load on each node 
• System load average 
• Free disk space 
• Heap Usage 
• Number of existing Solr cores 



Auto-Scaling Policies

• Policy defines the desired layout of the cluster 
• Policies are at the cluster level and augmented for 

collections if necessary 
• Replaces the old “Rule based replica placement” 

framework



Auto-Scaling Policies

Specify policies for a node 

• Any node must have a maximum of 5 solr cores

{node:#ANY, cores:<6}



Auto-Scaling Policies

Specify a policy that applies to collections 

• All replicas must be on unique nodes

{node:#ANY, collection:my_coll, replica:<2}

• Do not place more than 1 replica of a shard on the same 
node

{node:#ANY, collection:my_coll, shard:#EACH, replica:<2}



Auto-Scaling Policies

• Spread two replicas for each shard across availability 
zones 

• Start every Solr node with a system property to identify 
it’s availability zone  

• Example “-Davailability_zone=us-east-1a” 

{"replica": "<2", "shard": "#EACH", 
"sysprop.availability_zone": “us-east-1a"} 

{"replica": "<2", "shard": "#EACH", 
"sysprop.availability_zone": "us-east-1b"}



Auto-Scaling Policy - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


Auto-Scaling Preferences

• Preferences is a language to define load 
• Preferences are only at the cluster level 
• Not hard conditions 
• You can choose to either maximise or minimise on a 

metric to order nodes 
• cores - number of Solr cores on a node 
• freedisk - the amount of free disk space 
• heapUsage - heap used / heap allocated 
• sysLoadAvg - the system load average reported by 

JVM



Auto-Scaling Preferences

{minimize:cores}

{minimize:sysLoadAvg}

{maximize:freedisk}

{<sort-order>:<metric>, precision:<val>}



Auto-Scaling Preferences

If the difference between the values of free disk for two 
nodes is within the precision value then they are considered 
equivalent.  

The precision allows Solr to introduce ties so that the rest of 
the preferences can be applied. Metrics having floating 
point values must have precision if they are not the last 
preference.

{maximize:freedisk, precision:10}



Auto-Scaling Preferences - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


Auto-Scaling Preferences - API

curl http://host:port/api/cluster/autoscaling/diagnostics

host:port/api/cluster/autoscaling/diagnostics


Collection APIs

Collection APIs automatically use policy and preferences to 
place replicas in desired nodes 

• Create Collection 
• Add Replica 
• Split Shard 
• Create Shard 
• Restore Collection



Collection Replication Factor

• Define Solr collections which maintain it’s replication 
factor 

• When enabled, Solr auto-creates relevant triggers and 
adds replicas to keep the replication factor satisfied 

• Uses the defined policies and preferences while adding 
the new replica 

• Add &autoAddReplicas=true while creating your 
collection 

• False by default



Auto-Scaling Triggers

Triggers, once activated, perform actions such as evaluating 
the system against the autoscaling configuration. 

Solr 7.1 introduced two triggers that activate on a node 
joining or leaving a cluster. Both move replicas around to 
balance load. 

Solr 7.3 introduced triggers that activate based on search 
rate / a schedule / metric based



Auto-Scaling Triggers - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


Auto-Scaling Triggers - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


Search Rate Trigger

•Monitors 1-min average search rates 

•Monitors rates per collection, per shard and per node 

•Moves the replica with the highest rate to another node if 

rate is breached per-node 

•Adds a replica if rate is breached per-collection or per-

shard



Search Rate Trigger - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


Trigger Actions

Triggers Actions are executed in response to a trigger. 

• Compute Plan:  
- Evaluates the policy/preferences against the current 

state of Solr 
- Computes the list of operations that push Solr 

towards the desired state 
• Execute Plan: Executes the list of operations



Auto-Scaling Triggers - API



Trigger Listener

Trigger Listeners are attached to a trigger to be notified of 
important lifecycle events. 

Examples of lifecycle include a trigger being activated, 
aborted and overall success or failure as well as start or 
finish of individual actions 

Solr provides two listeners: one automatically stores event 
info to .system collection and second can be used to send 
events to external systems via HTTP



HTTP Trigger Listener - API

curl -X POST http://host:port/api/cluster/autoscaling -d

host:port/api/cluster/autoscaling


�29

Thank You




