Aggregating, reporting, and visualizing 10s of billions of records per day from a global footprint

© 2017 AudienceScience Inc.

Who

Frank Conrad

- Chief Architect at AudienceScience
- <u>frank@fc-tb.de</u>
- https://www.linkedin.com/in/frankconrad/
- Software development since 80's
- Co-founder of 7d / wunderloop
- all about performance, scale, efficiency
- deep knowledge
 - scale services
 - scale processing hadoop, MR, storm, kafka, cassandra,voldemort,...
 - mesos, marathon
 - Unix system/kernel, production, monitoring
- looking for new challenges

Background

- AudienceScience provides fully integrated, end to end, advertising solutions for the world's largest brand advertisers.
- AudienceScience receives, processes and responds (in realtime) to over 80 billion incoming requests a day, in over 42 countries.
- Our solutions allow advertisers to effectively manage and leverage their consumer data to produce industry leading ROI on their advertising spend.
- Global Distribution of Five Points of Presence to Central DC
- Where we were
 - 20 Billion TPD in 2014

The Challenge

- collection
 - billing relevant
- transfer
- backup / disaster recovery
- processing
- reporting
- traffic increased by 10x in years

AUDIENCE SCIENCE

© 2017 AudienceScience Inc.

The edge (pod)

- Services very distributed
- scribe
- rsync
- kafka
- kafka fallback

experience with kafka

- scales and is performing
- runs rock solid
- think what happens if kafka fails
- hardware
 - cpu, memory
 - disk, raid
 - network
- monitoring
 - kafka-manager

Pod local processing

- full traffic
- Up to 500k msg/s with 2.5kb

disaster recovery

- reprocess / rebuild
- broken DC
- Edge
 - To S3 (secor)
 - asap, as raw make sense
- DC
 - consolidated data
 - periodic backups
- secor scale enhancements for S3

central DC

- first implementation
 - straight forward
- facing problems
 - not enough parallelism
 - didn't leverage resources evenly

redesign goals

- scale, efficiency, performance
- maximize mapper side work
- optimize / minimize data read, shuffle
- splittable big files (immutable)
- flexible workflows, simplified restart,...
- simpler to maintain

solution we choose

- Basket
 - add / maintain data (in files)
 - data in avro files
 - simple to iterate over data / get file list
- Basket type campaign
 - per campaign
 - user oriented
- Basket type billing
 - per exchange. timeline
 - transaction oriented
- main processing done in java MRV2/yarn

Result

- pros
 - 6x performance (lower runtime) at start
 - leverage cluster more evenly
 - one run could produce up to 30 reports in parallel
 - same cluster could handle later > 10x of traffic
- cons
 - updating baskets needs rewrite of whole part file like parquet
 - need nested data format, not so nice with pig,...
 - non standard way / thinking ;)

What we did

- partitioning, always double, depend on size
- meta data in files
- mutable files, always work with file lists
- merge on reducer, by read old file directly

UI / visualisation

- product/customer want new reports/analytics every week
- engineering and UI can't keep up
- did analysis of the existing reports
- 80% of reports could run on pre aggregated data
 - huge amount of rows in a few tables every day
- POC
 - use redshift as data warehouse
 - use periscope data as query visualization

UI / visualization solution

- data warehouse
 - Snowflake
- visualization
 - Looker

file formats

- json
- protobuf
- avro

Thank you

- Adam Shepard (senior architect)
- Prashant Kumar (development manager) and team lead for all hadoop, snowflake implementation mention above
- As mentioned, Audiencescience has closed down
- So we are looking for new challenges
- Contact me <u>frank@fc-tb.de</u>

