

Roman Shaposhnik @rhatr, Pivotal Inc.

OSV: PROBABLY THE BEST OS FOR CLOUD WORKLOADS YOU'VE NEVER HEARD OF

Following

@polvi @kelseyhightower Anyone caught advocating unikernels should be forced to smoke the whole pack!

RETWEETS

15

LIKES

30

1:09 PM - 22 Nov 2015

Piedmont, CA

Unikernels are unfit for production

January 22, 2016 - by Bryan Cantrill

SHARE: (*) (*) (*)

Recently, I made the mistake of rhetorically asking if I needed to spell out why unikernels are unfit for production. The response was overwhelming: whether people feel that unikernels are wrong-headed and are looking for supporting detail or are unikernel proponents and want to know what the counterarguments could possibly be, there is clearly a desire to hear the arguments against running unikernels in production.

So, what's the problem with unikernels? Let's get a definition first: a unikernel is an application that runs entirely in the microprocessor's privileged mode. (The exact nomenclature varies; on x86 this would be running at Ring 0.) That is, in a unikernel there is no application at all in a traditional sense; instead, application functionality has been pulled into the operating system kernel. (The idea that there is "no OS" serves to mislead; it is not that there isn't an operating system but rather that the application has taken on the hardware-interfacing responsibilities of the operating system — it is "all OS", if a crude and anemic one.) Before we discuss the challenges with this, it's worth first exploring the motivations for unikernels — if only because they are so thin...

The raise of the PaaS: Cloud Foundry

The world's largest companies power their clouds with Cloud Foundry

Platinum

Gold

Pivotal

Silver

No, but seriously?

Cloud-native apps AKA 12factor.net

- Codebase
- Dependencies
- Config
- Backing services
- Build, deploy, run
- Stateless processes

- Port binding
- Concurrency
- Disposability
- Dev == prod
- Logs == streams
- Admin processes

- > cd /path/to/my/app
- > tree

README.md

— app.groovy

application.properties

igwedge manifest.yml

> cat manifest.yml

applications:

- name: cf-spring

memory: 512M

instances: 3

random-route: true

```
> cf push my-app
```

Using manifest file /Users/verney/workspace/cf-sample-app-spring/manifest.yml

Creating app cf-spring in org pivot-jules / space test as jules@verne.io...

OK

```
Uploading cf-spring...

Uploading app files from: /Users/vereny/workspace/cf-
sample-app-spring

Uploading 1M, 44 files
Done uploading
```

OK

Droplets

App Source Code

Buildpack

File System ('Stack')

Staging Container

> cf scale my-app -i 8

Anatomy of a droplet

μservice code

[Java] Virtual Machine

"Stuff"

Hardware

How are we doing it today?

Is there a better way?

Unikernels

- "Unikernels: library operating systems for the cloud" came out in 2013
- A "library" operating system
- A kernel that can only support one process
- An 'executable' that needs virtualization to run
 - Qemu, VB, VMWare, Xen, Public Cloud

Anykernels

- Programming discipline for kernel code reuse
- "The Design and Implementation of the Anykernel and Rump Kernels" by Antti Kantee
- Capabilities
 - NetBSD filesystems as Linux processes
 - User-space TCP/IP stack
- Building blocks for... any kernels

What unikernels are available

- Mirage OS
 - Emerged from Xen, OCaml specific, research
- Clive
 - Go specific, Plan 9 lineage, research
- Rump Kernels (brought to you by A. Kantee)
 - Rumprun unikernel, "static linking" down to the kernel
- OSv

UniK: Unikernel Builds & Deployment

unik

- An open source tool
 - https://github.com/emc-advanced-dev/unik
- A familiar Docker-like CLI
- Abstracts away details of virtualization backends
- Integrates with Docker & Cloud Foundry
- Pluggable support for Unikernels
 - OSv & rump

OSv from Cloudius Systems

- A unikernel for "POSIX" and memory managed platforms (JVM, Go, Lua)
- Anykernel'ish
 - E.g. ZFS
- Runs on top of KVM, Xen, VirtualBox, VMWare
- Looks like an app to the host OS
- Small, fast and easy to manage at scale

OSv manifesto

- Run existing Linux applications
- Run existing Linux applications faster
- Make boot time ~= exec time
- Explore APIs beyond POSIX
- Leverage memory managed platforms (JVM, Go)
- Stay open

What's inside?

single address space in "kernel mode"

Anything it can't do?

- A 100% replacement for a Linux kernel
 - No fork()ing
- No process isolation
- The least amount of device drivers ever

Virtualization vs. performance

- Network-intensive apps:
 - unmodified: 25% gain in throughput
 47% decrease in latency
 - non-POSIX APIs use for Memcached:
 - 290% increase in performance
- Compute-intensive apps:
 - YMMV

Van Jacabson's net channels

Traditional TCP/IP stack

Memory management in UNIX

Memory management in OSv

JVM balooning (no more -Xmx)

Turbo charging JVM GC

Turbo charging JVM GC

Turbo charging JVM GC

Why should it work this time?

- Unikernels/exokernels back in '90
- JVM-on-bare-metal (Azul, BEA, etc.) back in '00
- Things they didn't have back then
 - HW-assisted virtualization (KVM, XEN, etc.)
 - Elastic infrastructure oriented architectures
 - Cloud Foundry (PaaS)

No, really we need PaaS

No, really we need PaaS

Elastic, next generation datacenter

- Commodity, rack-provisioned Hardware
- JeOS (CoreOS, SmartOS, Xen+JeOS)
 - a glorified device driver: anything2virtio
 - optionally: a way to virtualize a "dom0" kernel
- Docker++ as the new ELF format
 - with either nokernel or unikernel inside
- Cloud Foundry to rule them all

Finally killing DevOps

- Ops (IT) maintains the bare OS
- Devs maintain the μservices
- PaaS maps µservices to images and orchestrates

Finally killing DevOps

- Ops (IT) maintains the bare OS
- Devs maintain the μservices
- PaaS maps µservices to images and orchestrates

Questions?

By @cloud_opinion

Imagine no platforms
I wonder if you can
No need for xAAS
A brotherhood of bare metal

Imagine there is no VM
It's easy if you try
No host below us
Above us only apps