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Unikernels are unfit for production

January 22, 2016 - by Bryan Cantrill siare: QPO DO

Recently, | made the mistake of rhetorically asking if | needed to spell out why unikernels are unfit for
production. The response was overwhelming: whether people feel that unikernels are wrong-headed and
are looking for supporting detail or are unikernel proponents and want to know what the counter-
arguments could possibly be, there is clearly a desire to hear the arguments against running unikernels in
production.

So, what’s the problem with unikernels? Let’s get a definition first: a unikernel is an application that runs
entirely in the microprocessor’s privileged mode. (The exact nomenclature varies; on x86 this would be
running at Ring 0.) That is, in a unikernel there is no application at all in a traditional sense; instead,
application functionality has been pulled into the operating system kernel. (The idea that there is “no OS”
serves to mislead; it is not that there isn’t an operating system but rather that the application has taken
on the hardware-interfacing responsibilities of the operating system — it is “all OS”, if a crude and
anemic one.) Before we discuss the challenges with this, it’s worth first exploring the motivations for
unikernels — if only because they are so thin...



The raise of the PaaS: Cloud Foundry
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The world's largest companies
power their clouds with Cloud Foundry
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No, but seriously?




Cloud-native apps AKA 12factor.net

* Codebase * Port binding

* Dependencies * Concurrency

* Config * Disposability
 Backing services * Dev == prod

* Build, deploy, run * LOgs == streams

» Stateless processes  * Admin processes



> cd /path/to/my/app
> tree

—— README .md

—— app.groovy

—— application.properties
—— manifest.yml




> cat manifest.yml

applications:

- name: cf-spring
memory: 512M
instances: 3
random-route: true



> cf push my-app

Using manifest file /Users/verney/workspace/cf-sample-app-spring/
manifest.yml

Creating app cf-spring in org pivot-jules / space test as
jules@verne.io...

(0)¢



Uploading cf-spring...

Uploading app files from: /Users/vereny/workspace/cf-
sample-app-spring

Uploading 1M, 44 files

Done uploading

(0) ¢



Droplets

App Source Code

Buildpack

File System (‘Stack’)

Staging Container




> cf scale my-app -1 8
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Anatomy of a droplet



How are we doing it today?

Application-specific
static linking

™S

OClI “runc” image

—

Common, shared kernel




Is there a better way?

Application-specific
static linking

™S

Tiny VM image AKA

/ unikernel

Hardware-assisted virtualization




Unikernels

e “Unikernels: library operating systems for the
cloud” came out in 2013

* A “library” operating system
* A kernel that can only support one process

e An ‘executable’ that needs virtualization to run
— Qemu, VB, VMWare, Xen, Public Cloud



Anykernels

* Programming discipline for kernel code reuse

 “The Design and Implementation of the
Anykernel and Rump Kernels” by Antti Kantee

e Capabilities
— NetBSD filesystems as Linux processes
— User-space TCP/IP stack

* Building blocks for... any kernels



What unikernels are available

* Mirage OS

— Emerged from Xen, OCaml specific, research
* Clive

— Go specific, Plan 9 lineage, research

 Rump Kernels (brought to you by A. Kantee)
— Rumprun unikernel, “static linking” down to the kernel

e OSv
-



UniK: Unikernel Builds & Deployment
* An open source tool {E U n|k

— https://github.com/emc-advanced-dev/unik
A familiar Docker-like CLI

* Abstracts away details of virtualization backends
* Integrates with Docker & Cloud Foundry

* Pluggable support for Unikernels
— OSv & rump




OSv from Cloudius Systems

* A unikernel for “POSIX” and memory managed
platforms (JVM, Go, Lua)

* Anykernel’ish
— E.g. ZFS

* Runs on top of KVM, Xen, VirtualBox, VMWare
* Looks like an app to the host OS
* Small, fast and easy to manage at scale



OSv manifesto

* Run existing Linux applications

* Run existing Linux applications faster

* Make boot time ~= exec time

* Explore APIs beyond POSIX

* Leverage memory managed platforms (JVM, Go)
* Stay open



What’s inside?

virtio ﬁ

i i

dynamic linker

single address space in “kernel mode”




Anything it can’t do?

A 100% replacement for a Linux kernel
— No fork()ing

* No process isolation

e The least amount of device drivers ever




Virtualization vs. performance

* Network-intensive apps:

— unmodified: 25% gain in throughput
47% decrease in latency

— non-POSIX APIs use for Memcached:
290% increase in performance

* Compute-intensive apps:
— YMMV



Van Jacabson’s net channels

send/recv send/recv

e ==

app thread kernel (IRQ) app thread kernel (IRQ)

Traditional TCP/IP stack OSv TCP/IP stack




Memory management in UNIX

JVM Heap




Memory management in OSv

JVM Heap




JVM balooning (no more -Xmx)

JVM Heap




Turbo charging JVM GC




Turbo charging JVM GC
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Turbo charging JVM GC

N

CPU MMU assisted tracking table




Why should it work this time?
. Unikernele fexokarmals back in 0c

[ ]
4 4

* Things they didn’t have back then
— HW-assisted virtualization (KVM, XEN, etc.)
— Elastic infrastructure oriented architectures
— Cloud Foundry (PaaS)



No, really we need Paa$S
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No, really we need Paa$S
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Elastic, next generation datacenter

e Commodity, rack-provisioned Hardware
e JeOS (CoreOS, SmartQOS, Xen+JeOS)

— a glorified device driver: anything2virtio

— optionally: a way to virtualize a “dom0” kernel
* Docker++ as the new ELF format

— with either nokernel or unikernel inside

* Cloud Foundry to rule them all



Finally killing DevOps

* Ops (IT) maintains the bare OS
* Devs maintain the uservices

* PaaS maps pservices
to images and orchestrates




Finally killing DevOps

* Ops (IT) maintains the bare OS
* Devs maintain the uservices

* PaaS maps pservices
to images and orchestrates



Questions?

By @cloud_opinion

Imagine no platforms

| wonder if you can

No need for xAAS

A brotherhood of bare metal

Imagine there is no VM
It's easy if you try

No host below us
Above us only apps



