Roman Shaposhnik @rhatr, Pivotal Inc.

OSV: PROBABLY THE BEST OS FOR CLOUD
WORKLOADS YOU'VE NEVER HEARD OF

g% 8 Bryan Cantrill ¥
f becantrill

@polvi @kelseyhightower Anyone caught
advocating unikernels should be forced to
smoke the whole pack!

r‘;':ém'tt's ;roz_ .E] l 3 a&'#‘

1:09 PM - 22 Nov 2015

¢ Piedmont, CA

£ https://www.joyent.com/blog/unikernels-are-unfit-for-production

Unikernels are unfit for production

January 22, 2016 - by Bryan Cantrill siare: QPO DO

Recently, | made the mistake of rhetorically asking if | needed to spell out why unikernels are unfit for
production. The response was overwhelming: whether people feel that unikernels are wrong-headed and
are looking for supporting detail or are unikernel proponents and want to know what the counter-
arguments could possibly be, there is clearly a desire to hear the arguments against running unikernels in
production.

So, what’s the problem with unikernels? Let’s get a definition first: a unikernel is an application that runs
entirely in the microprocessor’s privileged mode. (The exact nomenclature varies; on x86 this would be
running at Ring 0.) That is, in a unikernel there is no application at all in a traditional sense; instead,
application functionality has been pulled into the operating system kernel. (The idea that there is “no OS”
serves to mislead; it is not that there isn’t an operating system but rather that the application has taken
on the hardware-interfacing responsibilities of the operating system — it is “all OS”, if a crude and
anemic one.) Before we discuss the challenges with this, it’s worth first exploring the motivations for
unikernels — if only because they are so thin...

The raise of the PaaS: Cloud Foundry

Y%

A

J

Data

iy

Private

Services Clouds
© CLOUD .
Msg FOUNDRY Public
Services ClOUdS
444
ey
Services

Clouds

£

Public Cloud
Providers

%t appfog

CLOUD
FOUNDRY * COM

RIGHTS

“O\ bluslock

eNSTRATUS
caLe

wvirtacore
s v 5 v e w5

Private Cloud
Distributions

AcﬂveState%

&) T

¢ cANONICAL

nimbula

.SCALR@@E;(;: :

The world's largest companies
power their clouds with Cloud Foundry

Platinum
Pivotal HE— EMC intel)
@ o vmware
Gold
2 ‘ > .‘(.lpunnm £"2 CenturyLink-
?ffﬁf'f“mfﬁ m BNY MELLON . S\ms?com S (e
i TELSTRA &M Huawer Ericsson Z ActiveState @ NTT q Ssas il
< verizon
Silver
mimacm cleudsoft apigee ®bluebox FGFm CanOPy & Cloudlredo
dodc'{ redislabs DYNAMICS O AZYL (D anynines & g}w £ ATOROS
-
TOSHIBA A;kanmi FUﬁEU M{x m uﬂmendix' . Bloomberg

No, but seriously?

Cloud-native apps AKA 12factor.net

* Codebase * Port binding

* Dependencies * Concurrency

* Config * Disposability
 Backing services * Dev == prod

* Build, deploy, run * LOgs == streams

» Stateless processes * Admin processes

> cd /path/to/my/app
> tree

—— README .md

—— app.groovy

—— application.properties
—— manifest.yml

> cat manifest.yml

applications:

- name: cf-spring
memory: 512M
instances: 3
random-route: true

> cf push my-app

Using manifest file /Users/verney/workspace/cf-sample-app-spring/
manifest.yml

Creating app cf-spring in org pivot-jules / space test as
jules@verne.io...

(0)¢

Uploading cf-spring...

Uploading app files from: /Users/vereny/workspace/cf-
sample-app-spring

Uploading 1M, 44 files

Done uploading

(0) ¢

Droplets

App Source Code

Buildpack

File System (‘Stack’)

Staging Container

> cf scale my-app -1 8

File System (‘Stack’)

File System (‘Stack’)

File System (‘Stack’)

File System (‘Stack’)

Runtime Container

Runtime Container

Runtime Container

Runtime Container

File System (‘Stack’)

File System (‘Stack’)

File System (‘Stack’)

File System (‘Stack’)

Runtime Container

Runtime Container

Runtime Container

Runtime Container

Anatomy of a droplet

How are we doing it today?

Application-specific
static linking

™S

OClI “runc” image

—

Common, shared kernel

Is there a better way?

Application-specific
static linking

™S

Tiny VM image AKA

/ unikernel

Hardware-assisted virtualization

Unikernels

e “Unikernels: library operating systems for the
cloud” came out in 2013

* A “library” operating system
* A kernel that can only support one process

e An ‘executable’ that needs virtualization to run
— Qemu, VB, VMWare, Xen, Public Cloud

Anykernels

* Programming discipline for kernel code reuse

 “The Design and Implementation of the
Anykernel and Rump Kernels” by Antti Kantee

e Capabilities
— NetBSD filesystems as Linux processes
— User-space TCP/IP stack

* Building blocks for... any kernels

What unikernels are available

* Mirage OS

— Emerged from Xen, OCaml specific, research
* Clive

— Go specific, Plan 9 lineage, research

 Rump Kernels (brought to you by A. Kantee)
— Rumprun unikernel, “static linking” down to the kernel

e OSv
-

UniK: Unikernel Builds & Deployment
* An open source tool {E U n|k

— https://github.com/emc-advanced-dev/unik
A familiar Docker-like CLI

* Abstracts away details of virtualization backends
* Integrates with Docker & Cloud Foundry

* Pluggable support for Unikernels
— OSv & rump

OSv from Cloudius Systems

* A unikernel for “POSIX” and memory managed
platforms (JVM, Go, Lua)

* Anykernel’ish
— E.g. ZFS

* Runs on top of KVM, Xen, VirtualBox, VMWare
* Looks like an app to the host OS
* Small, fast and easy to manage at scale

OSv manifesto

* Run existing Linux applications

* Run existing Linux applications faster

* Make boot time ~= exec time

* Explore APIs beyond POSIX

* Leverage memory managed platforms (JVM, Go)
* Stay open

What’s inside?

virtio ﬁ

i i

dynamic linker

single address space in “kernel mode”

Anything it can’t do?

A 100% replacement for a Linux kernel
— No fork()ing

* No process isolation

e The least amount of device drivers ever

Virtualization vs. performance

* Network-intensive apps:

— unmodified: 25% gain in throughput
47% decrease in latency

— non-POSIX APIs use for Memcached:
290% increase in performance

* Compute-intensive apps:
— YMMV

Van Jacabson’s net channels

send/recv send/recv

e ==

app thread kernel (IRQ) app thread kernel (IRQ)

Traditional TCP/IP stack OSv TCP/IP stack

Memory management in UNIX

JVM Heap

Memory management in OSv

JVM Heap

JVM balooning (no more -Xmx)

JVM Heap

Turbo charging JVM GC

Turbo charging JVM GC

N

-

Turbo charging JVM GC

N

CPU MMU assisted tracking table

Why should it work this time?
. Unikernele fexokarmals back in 0c

[]
4 4

* Things they didn’t have back then
— HW-assisted virtualization (KVM, XEN, etc.)
— Elastic infrastructure oriented architectures
— Cloud Foundry (PaaS)

No, really we need Paa$S
$

APP LIFECYCLE

Application Execution (DEA) Blob Store

Sys Log Applog | METRICS & y&m

Cloud Foundry Elastic Runtime

3

7]
[
)
74
O
g
(28]
)
-
>
P
)
w

No, really we need Paa$S

FA R, Hf wl 4 [3] [EJ

Cloud Controller ' APP LIFECYCLE
[eepsamn B] weson

Application Execution (DEA) Blob Store

(wien @
Coars i]

| Sys Log I | Collector I App Log METRIG & yﬁ”\\’i

Cloud Foundry Elastic Runtime

3

7]
[
)

74
O
g

(28]
)

-
>
P
)

w

Elastic, next generation datacenter

e Commodity, rack-provisioned Hardware
e JeOS (CoreOS, SmartQOS, Xen+JeOS)

— a glorified device driver: anything2virtio

— optionally: a way to virtualize a “dom0” kernel
* Docker++ as the new ELF format

— with either nokernel or unikernel inside

* Cloud Foundry to rule them all

Finally killing DevOps

* Ops (IT) maintains the bare OS
* Devs maintain the uservices

* PaaS maps pservices
to images and orchestrates

Finally killing DevOps

* Ops (IT) maintains the bare OS
* Devs maintain the uservices

* PaaS maps pservices
to images and orchestrates

Questions?

By @cloud_opinion

Imagine no platforms

| wonder if you can

No need for xAAS

A brotherhood of bare metal

Imagine there is no VM
It's easy if you try

No host below us
Above us only apps

