
Big, Fast, Easy Data:
Distributed stream processing
for everyone with KSQL
The Streaming SQL Engine for Apache Kafka

Michael G. Noll, Confluent
@miguno

Founded by the creators
of Apache Kafka

Technology Developed
while at LinkedIn

Largest Contributor and
tester of Apache Kafka

• Founded in 2014

• Raised $84M from Benchmark, Index, Sequoia

• Transacting in 20 countries

• Commercial entities in US, UK, Germany, Australia

Apache Kafka Databases

SQLStream Processing

Booked hotel, flight Ordered a taxi

Chatted with friends

Listened to musicPaid money

Played a video game

Read a newspaper <add your example>

Billing Information

Purchases

Geolocation Updates

And more such data

STREAMS of
customer data

(continuously flowing)

TABLE of
customer profiles

(continuously updated)

Motivating example

KSQL
is the

Streaming
SQL Engine

for

Apache Kafka
5+5

KSQL is the Easiest Way to Process with Kafka

Kafka
(data)

KSQL
(processing)

read,
write

network

All you need is Kafka – no complex deployments of
bespoke systems for stream processing!

CREATE STREAM
CREATE TABLE
SELECT
…and more…

KSQL is the Easiest Way to Process with Kafka

Runs
Everywhere

Elastic, Scalable,
Fault-Tolerant,

Distributed, S/M/L/XL

Powerful Processing incl.
Filters, Transforms, Joins,
Aggregations, Windowing

Supports Streams
and Tables

Free and
Open Source

Kafka Security
Integration

Event-Time
Processing

Zero Programming
in Java, Scala

0

Exactly-Once
Processing

Stream processing with Kafka

Example: Using Kafka’s Streams API for writing
elastic, scalable, fault-tolerant Java and Scala applications

Main
Logic

Stream processing with Kafka

CREATE STREAM fraudulent_payments AS
SELECT * FROM payments
WHERE fraudProbability > 0.8;

Same example, now with KSQL.
Not a single line of Java or Scala code needed.

Easier, faster workflow

write code in

package app

run app

write (K)SQL
Java or Scala

ksql>

Kafka Streams API KSQL

…
(1 or many instances)

Interactive KSQL usage

ksql> POST /query

CLI REST API1 3UI2

KSQL REST API example
POST /query HTTP/1.1

{
"ksql": "SELECT * FROM users WHERE name LIKE ‘a%’;"
"streamsProperties": {
"your.custom.setting": "value"

}
}

Here: run a query and stream back the results

KSQL
are some

what

use cases?

10+5

KSQL for Data Exploration

SELECT page, user_id, status, bytes
FROM clickstream
WHERE user_agent LIKE 'Mozilla%';

An easy way to inspect data in Kafka

SHOW TOPICS;

PRINT 'my-topic' FROM BEGINNING;

KSQL for Data Enrichment

CREATE STREAM enriched_payments AS
SELECT payment_id, u.country, total
FROM payments_stream p
LEFT JOIN users_table u

ON p.user_id = u.user_id;

Join data from a variety of sources to see the full picture

1 Stream-table join

KSQL for Streaming ETL

CREATE STREAM clicks_from_vip_users AS
SELECT user_id, u.country, page, action
FROM clickstream c
LEFT JOIN users u ON c.user_id = u.user_id
WHERE u.level ='Platinum';

Filter, cleanse, process data while it is moving

KSQL for Anomaly Detection

CREATE TABLE possible_fraud AS
SELECT card_number, COUNT(*)
FROM authorization_attempts
WINDOW TUMBLING (SIZE 30 SECONDS)
GROUP BY card_number
HAVING COUNT(*) > 3;

Aggregate data to identify patterns or anomalies in real-time

2 … per 30sec windows

1 Aggregate data

KSQL for Real-Time Monitoring

CREATE TABLE failing_vehicles AS
SELECT vehicle, COUNT(*)
FROM vehicle_telemetry_stream
WINDOW TUMBLING (SIZE 1 MINUTE)
WHERE event_type = 'ERROR’
GROUP BY vehicle
HAVING COUNT(*) >= 3;

Derive insights from events (IoT, sensors, etc.) and turn them into actions

KSQL for Data Transformation

CREATE STREAM clicks_by_user_id
WITH (PARTITIONS=6,

TIMESTAMP='view_time’
VALUE_FORMAT='JSON') AS

SELECT * FROM clickstream
PARTITION BY user_id;

Quickly make derivations of existing data in Kafka

1 Re-partition the data

2 Convert data to JSON

Where is KSQL not such a great fit?

BI reports
• Because no indexes
•No JDBC (most BI tools are not good

with continuous results!)

Ad-hoc queries
• Because no indexes

to facilitate efficient
random lookups on
arbitrary record fields

KSQL
does

How

work?

15+7

Shoulders of Streaming Giants

Consumer,
Producer

KSQL

Kafka Streams

powers

powers

Flexibility

Ease of Use

CREATE STREAM, CREATE TABLE,
SELECT, JOIN, GROUP BY, SUM, …

KStream, KTable,
filter(), map(), flatMap(),
join(), aggregate(), …

subscribe(), poll(), send(),
flush(), beginTransaction(), …

Shoulders of Streaming Giants
CREATE STREAM fraudulent_payments AS
SELECT * FROM payments
WHERE fraudProbability > 0.8;

KSQL

Kafka
Streams

$ ksql-server-start

KSQL Architecture

KSQL
Engine

REST
API

Processing happens here,
powered by Kafka Streams

ksql>

Programmatic access from
Go, Python, .NET, Java,
JavaScript, …

UI

CLI

KSQL Server (JVM process)

Physical
…

Runs Everywhere, Viable for S/M/L/XL Use Cases

Physical

…and many more…

KSQL Architecture
Kafka

(your data)
KSQL

read,
write …

More KSQL

…

Fr
au

d
Te

am

…

M
ob

ile
 T

ea
m
KSQ

L Cluster

Servers form a
Kafka consumer group

to process data
collaboratively

network

KSQL Interactive Usage
Start 1+ KSQL servers

$ ksql-server-start

Interact with
KSQL CLI, UI, etc.

$ ksql http://ksql-server:8088

ksql>
REST API

KSQL Headless, Non-Interactive Usage

$ ksql-server-start --queries-file application.sql

ksql>
Typically version

controlled for auditing,
rollbacks, etc.

REST API
disabled

Start 1+ KSQL servers with .sql file containing pre-defined queries.

Example Journey from Idea to Production

Interactive KSQL
for development and testing

Headless KSQL
for Production

Desired KSQL queries

have been identified

and vetted

REST

“Hmm, let me try

out this idea...”

Stream-Table
The

Duality

22+15

Stream-Table Duality

CREATE STREAM enriched_payments AS
SELECT payment_id, u.country, total
FROM payments_stream p
LEFT JOIN users_table u

ON p.user_id = u.user_id;

CREATE TABLE failing_vehicles AS
SELECT vehicle, COUNT(*)
FROM vehicle_monitoring_stream
WINDOW TUMBLING (SIZE 1 MINUTE)
WHERE event_type = 'ERROR’
GROUP BY vehicle
HAVING COUNT(*) >= 3;

Stream Table

(from previous slides)

Do you think that’s a table you are querying ?

Stream Table

Stream-Table Duality

Alice 1

Alice 1
Charlie 5

Alice 3
Charlie 5

(Alice, 1)

(Charlie, 5)

(Alice, 3)

Alice 1

Alice 1
Charlie 5

Alice 3
Charlie 5

Table

https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.michael-noll.com/blog/2018/04/05/of-stream-and-tables-in-kafka-and-stream-processing-part1/

https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.michael-noll.com/blog/2018/04/05/of-stream-and-tables-in-kafka-and-stream-processing-part1/

Stream-Table Duality

CREATE TABLE current_location_per_user
WITH (KAFKA_TOPIC='input-topic’, ...);

This is actually an animation, but the

PDF format does not support this.

Stream-Table Duality

CREATE TABLE current_location_per_user
WITH (KAFKA_TOPIC='input-topic’, ...);

This is actually an animation, but the

PDF format does not support this.

Stream-Table Duality

CREATE TABLE visited_locations_per_user AS
SELECT username, COUNT(*)
FROM location_updates
GROUP BY username;

This is actually an animation, but the

PDF format does not support this.

Stream-Table Duality

CREATE TABLE visited_locations_per_user AS
SELECT username, COUNT(*)
FROM location_updates
GROUP BY username;

This is actually an animation, but the

PDF format does not support this.

Stream-Table Duality

aggregation

changelog

“materialized view”
of the stream

(like SUM, COUNT)

Stream Table

(CDC)

Apache Kafka Databases

Stream-Table Duality

How you benefit from this as a KSQL user.

Example: CDC from DB via Kafka to Elastic

customers
Kafka Connect

streams data in
Kafka Connect

streams data out

KSQL processes
table changes
in real-time

Example: Real-time Data Enrichment

Kafka Connect
streams data in

<wherever>
Kafka Connect

streams data out

Devices write
directly via
Kafka API

KSQL joins the stream
and table in real-time

customers

How KSQL itself benefits from this – a closer technical look

Fault-Tolerance, powered by Kafka

Server A:
“I do stateful stream
processing, like tables,
joins, aggregations.”

“streaming
restore” of

A’s local state to BChangelog Topic

“streaming
backup” of

A’s local state

KSQL

Kafka

A key challenge of distributed stream processing is fault-tolerant state.

State is automatically migrated
in case of server failure

Server B:
“I restore the state and

continue processing where
server A stopped.”

Fault-Tolerance, powered by Kafka
Processing fails over automatically, without data loss or miscomputation.

1 Kafka consumer group
rebalance is triggered

2 Processing and state of #3
is migrated via Kafka to
remaining servers #1 + #2

#3 died so #1 and #2 take over

1 Kafka consumer group
rebalance is triggered

2 Part of processing incl.
state is migrated via Kafka
from #1 + #2 to server #3

#3 is back so the work is split again

Elasticity and Scalability, powered by Kafka
You can add, remove, restart servers in KSQL clusters during live operations.

1 Kafka consumer group

rebalance is triggered

2 Part of processing incl.

state is migrated via Kafka

to additional server processes

“We need more processing power!”

Kafka consumer group

rebalance is triggered
1

2 Processing incl. state of

stopped servers is migrated

via Kafka to remaining servers

“Ok, we can scale down again.”

Want to take a deeper dive?

https://kafka.apache.org/documentation/streams/architecture

KSQL is built on top of Kafka Streams:
Read up on Kafka Streams’ architecture
including threading model, elasticity,
fault-tolerance, state stores for stateful
computation, etc. to learn more about how
all this works behind the scenes.

https://kafka.apache.org/documentation/streams/architecture

Wrapping up

37

KSQL
is the

Streaming
SQL Engine

for

Apache Kafka

KSQL is the Easiest Way to Process with Kafka

Runs
Everywhere

Elastic, Scalable,
Fault-Tolerant,

Distributed, S/M/L/XL

Powerful Processing incl.
Filters, Transforms, Joins,
Aggregations, Windowing

Supports Streams
and Tables

Free and
Open Source

Kafka Security
Integration

Event-Time
Processing

Zero Programming
in Java, Scala

0

Exactly-Once
Processing

Where to go from here

http://confluent.io/ksql

https://slackpass.io/confluentcommunity #ksql

https://github.com/confluentinc/ksql

http://confluent.io/ksql
https://slackpass.io/confluentcommunity
https://github.com/confluentinc/ksql

