UNDERSTANDING DATABASES FOR .
DISTRIBUTED DOCKER APPLICATIONS

Berlin Buzzwords June 1st

ABOUT ME

-+ London, Melbourne, Leipzig, Berlin

+ Developer, Designer, Writer,
Musician

- Developer Advocate

chris@crate.lo
@chrischinch
@cratelo

THE SINGLE NODE DATABASE
BACKEND IS DEAD

APP SERVER I

APP SERVER

APP SERVER

MOBILE &
WEB APPS

APP SERVER

APP SERVER

APP SERVER I

THE FUTURE OF DATABASES IS
DISTRIBUTED

TTTT T e
AL
ad | ||]]

1T

i

—

Cwikker ¥

MICROSERVICES &
DOCKER

Datacenter Snowflakes Virtualized and Cloud Docker Containers Compute Service
* Deploy in months * Deploy In minutes * Deploy in seconds * Deploy in milliseconds
- Live for years » Live for weeks » Live for minutes/hours - Live for seconds

Speed enables and encourages
new MICro service architectures

NOW: Z0O OF TECHNOLOGIES

Relational Document

Database Database
o\

MU S(ﬁL ‘ mongoDB

.

Powerful Blob Store

Search

é_.' elasticsearch

Apache

GridFS
HDFS

sync

9

scaling

1]
B 111
Edll]l]
B 1L
1]

i

sharding
_[: onoon
sagas

replication

A m

olele

-
4 nk

TRADITIONAL DBS
ON DOCKER

Mongo Secondary
(Shard A)

nl-highmem-4

@ Region 1

: h

Application I Mongo |

ue
Servers \ ,3,“3,

How to deal with persistent storage (e.g. databases) in docker

Docker - Persistence

How do you guys deal with |'ve already written about Docker. One big thing is that Docker
approach: build the image, database container, you probably want this. There is a pattern ¢ L= AL [o (el 1T gy [V R0 g B

@ Region 2

Consider the following MySQL Dockerfile:

docker run --volumes- Storage Concepts in Docker: Persistent Storage

IMHO, that has the drawba [JRLASUEETE

This is the second of three posts on storage management in

P
Application Ouery ’ Another idea would be to ir VOLUME /var/lib/mysql
Servers .
Router n container does not necess: .
\ 7_) RUN yum -y install mysql-server ¢ Doralakint Dicraoe: tha Flocker moves a database from nodel to nodeZ2, re-routes network connections to new location
r — (O VIVER R CETSVOIN I« Il RUN touch /etc/sysconfig/network '
@ ¢ Mongo S MOligv sevuiiuar y « Storage in Kubemetes
Clients e Sl EXPOSE 3306
Router = n1-highmen-2
\ J This is a side trip on my way

When you run this, you can create some test data (I've removec [EEEGES g and Brom: Fiichar hetiorN Drbay

] enough towarrant special att

Mongo Secondary
(Shard A) (Shard B)
hidden, priority: € Docke:

ol Persistent Storage e - 4009008 containes MongoDB container

: Flock }
in the previous post | talked a Ny

storage between containers.
host and it does not survive a

CRATE CLUSTER - Simple horizontal scaling

Just add and
remove nodes

zero-config
self-healing

buillt on a NoSQL architecture
a distributed SQL Database
(supporting semi-structured records)

extremely simple to install/operate s

superfast, powerful search Pa;ser

horizontally scaling, elastic, resilient Ana'vzerlf Planner

eve ntu aI-COnS|Ste nt, h|gh Distribution / Execution
concurrency |

Transport

| |
Collect Node Merge Node BLOB Node

Clients All nodes are equal

Handlerside

| | s

Facebook Presto
SQL Parser

Network

Storage Lucene

V V V V

docker
docker
docker
docker

pull crate: latest

run —d —P crate

run —d —P crate

run —d —p 4200:4200 —-p 4300:4300 crate

> docker run —-d —-p 4200:4200 —-p 4300:4300
——volume /data:/data
——env CRATE_HEAP_SIZE=8g
crate crate
-Des.path.data="/data/datal, /data/data2"
—-Des.multicast.enabled=false
—-Des.network.publish _host=$PRIVATE_IP
-Des.d1iscovery.zen.ping.unicast.hosts=$HOSTS

FOR EVERY
DEVELOPER

+ data Is as easy to scale as the
application

- Familiar, standard SQL Syntax.

- Automatic Configuration, Sharding
and Replication

+ Support for tables, semi-structured

records and binary data and search.

Q

open source
INnitiative

CRATE

COMPOSE

EXAMPLE

crate:
image: crate
ports:
- "4200:4200"
- "4300:4300"
vo lumes:
- /mnt/data/crate: /data
environment:
CRATE_HEAP_SIZE: 16g
command: crate -Des.cluster.name=my—-crate -Des.node.name=crate-1 -
Des.network.publish _host=cratedemo.dev

node:
build:
ports:
- '"8000:8000"
links:
— Crate

> docker—-machine create
——driver virtualbox
staging

> eval "$(docker-machine env staging)"

> docker run —-d —-p 4200:4200 —-p 4300:4300 crate

V V V V

docker—-machine create
—d virtualbox
env—-Ccrate
$(docker-machine env env-crate)
docker run swarm create
echo "export TOKEN=xx" >> .bash_profile
source .bash_profile

> docker—-machine create
——driver virtualbox
——Swarm
——Swarm—master
——Swarm—-discovery
token://${TOKEN}
crate-swarm

> docker—machine create
——driver virtualbox
——Swarm
——sSwarm—-discovery

token://yy
crate-swarm—nodel

> docker—-machine 1s
> $(docker—-machine env ——swarm crate-swarm)
> docker 1nfo

docker —-H tcp://HOST:2376
run —d —-p 4200:4200 —p 4300:4300
crate: latest crate
—Des.cluster.name=crate-swarm
—Des.multicast.enabled=false
—Des.transport.publish_host=HOST
-Des.d1iscovery.zen.ping.unicast.hosts="HOSTS"
—-Des.d1scovery.zen.minimum_master_nodes=X

WELL SUITED NOT WELL SUITED

» High volume, semistructured/ + Systems that require strong
dynamic data consistency

» Operational datastore for web » Systems that require transactions
applications that require powerful » Strong relational data

fulltext search

+ Elastic datastore for dynamic
startups

- Real time analytics and business
Intelligence

\ % o, N A 2 ¢

https://github.com/crate
http://stackoverflow.com/tags/crate/
IRC #crate on freenode
https://twitter.com/CratelO
https://tb.me/cratedata
support@crate.io

https://crate.lo

ARCHITECTURE

DISTRIBUTED
REAL-TIME SQL

- Automatic Sharding, Partitioning,
Replication

 Optimistic Concurrency Control, Read-
After Write consistency

» Aggregations are superfast and executed
truly distributed by realtime Map/Reduce.

- Crate uses Standard SQL* and can handle

thousands of read/write connections per
node

* equi-JOINSs to be released soon

SHARED-NOTHING
ARCHITECTURE

- Nodes do not share states

» All nodes are equal

- Each node Is iIndependent & self-
sufficient

- Each node can perform every task

CRATE CLUSTER - simple horizontal scaling

CLIENTS :
ALL NODES ARE EQUAL

HANDLERSIDE

TRANSPORT

PARSER

ANALYZER / PLANNER

|

DISTRIBUTION/
EXECUTION

|
TRANSPORT

COLLECT NODE MERGE NODE BLOB NODE

| | |
DATA FS

HORIZONTAL
SCALING Sve Slave Slave

Quantity over Quality
Increase amount of (smaller) nodes ==
instead of scaling a single node Master

Distributed/parallel computation

power Application Application Application
I . Server Server Server
New way of building webservices

Load Balancer

HORIZONTAL
SCALING

B R
. . — —
 Quantity over Quality
» Increase amount of (smaller) nodes
iInstead of scaling a single node
- Distributed/parallel computation

power
+ New way of building webservices

“°
"

