CRATE.IO

aximilian Michels
@stadtlegende
max@crate.io

mxm@apache.org

mailto:max@crate.io
mailto:mxm@apache.org

WHY ARE WE TALKING ABOUT THIS?

Traditional databases are well-researched and there are @
olenty of them (Postgres, MySQL, Oracle...)

Scalable search using these can be tricky SHIL.

Search engines are databases optimized for search and
scale (Lucene, Solr, Elasticsearch) 1/

H ucene

You can't typically use SQL with Search Engines

Why not stick with a mature query language standard
which everybody knows?

CrateDB

HISTORY OF SQL

* First draft of SQL is from 1974
* Latest draftis from 2016

* SQL is 44 (!) years old

* |tis a mature standard

* |tis a great query specification language

* Why break with it?

CrateDB

HOW SQL BECAME NOSQL

Distributed databases focused on an entirely new problem
How to distribute data?
How to ensure we can find the data again?

Consistency vs Availability vs Partition Tolerance

Implementing (distributed) SQL is complex

We can pbuild an APl which is much petter and simpler than SQL 17

Put/Get should be enough, the rest can be handled by the client |?

Finally we can leave all the legacy behind...

CrateDB

THE RETURN OF 5SQL

Ecosystem
Millions of developers/data scientists know SQL

There are endless tools compatible with SOL

Query Expressiveness
Non-trivial queries are difficult to model with NoSQL

Simplicity of NoSQL means more complexity on the applications layer

SQL actually makes sense!!

CrateDB

"A scalable SQL database optimized for search
without the NoSQL bullshit.”

== CrateDB

== CrateDB

Since 2014: https://github.com/crate/crate

Apache 2.0 licensed (community edition)

Built using Elasticsearch, Lucene, Netty, Antlr, ...

SQL-99 compatible

REST / Postgres Wire Protocol / JDBC / Python ...

CrateDB

https://github.com/crate/crate

WHAT TO EXPECT

What is great about CrateDB Not so great
Easy to setup Transactions
No funny APls, just SQL
Excellent search performance

Great scale out - Massive
reads / writes

Great documentation

Container aware

CrateDB

USING CRATEDB
== CrateDB

CRATEDB IS5 JUST LIKE A SQL DB

SQL is the only query API

-CREATE TABLE buzzwords.speakers (id INT PRIMARY KEY, name STRING)

-CREATE TABLE buzzwords.talks (id INT PRIMARY KEY, title STRING,
abstract STRING, speaker INT);

- INSERT INTO buzzwords.speakers (id, name) VALUES (1, ’“max’)

- INSERT INTO buzzwords.talks (id, title, abstract, speaker) VALUES
(1, ‘Talk about CrateDB’, ‘bla’, 1)

11

-SELECT * FROM buzzwords.talks t1 LEFT JOIN buzzwords.speakers t2 ON t1.1id = t2.1d

CrateDB

12

BUT THERE IS MORE

* denormalized (no joins necessary)

- CREATE TABLE buzzwords.speakers
(name STRING, talk OBJECT AS (title STRING, abstract STRING))

- INSERT INTO buzzwords.speakers (name, talk) VALUES
(‘max’, {title = ‘CrateDB’, abstract = ‘Lorem ipsum’})

-SELECT talk[‘title’] as title FROM buzzwords.speakers
ORDER BY title

CrateDB

CLUSTERING

NODE1 NODE?2 NODES3 NODEA4

- CREATE TABLE buzzwords.speakers (name STRING, talk OBJECT AS
(title STRING, abstract STRING))

- CLUSTERED BY name into 4 shards

SHARD

13

CrateDB

CLUSTERING / REPLICATION

NODE1 NODE?2 NODES3 NODEA4

> > > >

- CREATE TABLE buzzwords.speakers (name STRING, talk OBJECT AS
(title STRING, abstract STRING))

- CLUSTERED BY name into 4 shards
-WITH (number_of_replicas = 1)

PRIMARY

<REPLICA>

14

CrateDB

15

CLUSTERING / REPLICATION / PARTITIONED TABLES

NODE1 NODE?2 NODES3 NODEA4

() () () () () () () () () () () ()

CREATE TABLE buzzwords.speakers (name STRING, talk OBJECT as
(title = STRING, abstract = STRING), year INT)

CLUSTERED BY name into 4 shards
PARTITIONED BY (year, ..)

WITH (number_of_replicas = 1)

PRIMARY

CREPL'CA> CrateDB

16

MORE FEATURES

Postgres protocol compatible Table/Schema/View Privileges
Geo search SSL encryption

Text Analyzers MQTT Ingestion

UDFs Generated Columns
Snapshots Views

User management ash Joins

Authentication Web Intertace

CrateDB

ARCHITECTURE
== CrateDB

CRATEDB TECH

A

=% CrateDB

STACK

WEB INTERFACE
CLIENTS

SQL QUERY PROCESSING
LUCENE QUERY GENERATION
DISTRIBUTED QUERY EXECUTION
POSTGRES / REST PROTOCOL

TRANSPORT / ROUTING / REPLICATION
SNAPSHOTS
LUCENE REQUESTS

DOCUMENT STORE
INDEXING FIELDS / COLUMN STORAGE
QUERYING DOCUMENT STORES

18

CrateDB

19

INTRODUCTION TO S wecene

L ucene stores documents which are CrateDB’s rows

Documents have fields

{
_1d . ‘1237,
name : ‘Bob’,
title : ‘How I Learned to Stop Worrying
and Love the Bomb’,
price : 23.42

Fields are indexed tor efficient lookup

Fields have column store for efficient aggregation

Inverted Index

BOB —» 123, ...
HOW —» 123, ...
STOP = 123, ...

Column Storage

NAME —-» BOB, ALICE, MAX, ...
PRICE —» 23.42, 47.21, 38.00, ...

CrateDB

20

INTRODUCTION TO ELASTICSEARCH

Elasticsearch core concepts revolve around indices, shards, and replicas
An index is a document store composed of n parts, called shards
Fach shard has O or more replicas which hold copies of the shard data

Replicas are not only usetul for fault tolerance but also increase the search
oerformance

CrateDB

HOW TABLES RELATE TO INDICES AND SHARDS

—ach table in CrateDB is "PROPERTIES":{
. . “NAME":{"TYPE":"KEYWORD "},
represented by an ES index with a "TALKS":{*DYNAMIC":"TRUE",

"PROPERTIES " :{

. |ndex Mapplng "ABSTRACT":{"TYPE":"KEYWORD"},
mapping
"TITLE":{"TYPE":"KEYWORD"}

}
}
}

Table mapping

Fach partition in a partitioned

. N TABLE T1 T2 T3
table is represented by an ES
. INDEX t1 t2.day t2.day? t3
index
SHARD1
Partition indices are created by --
. . . SHARD?2
encoding the partition value in

SHARD3

the index name
SHARDA4

22

FROM QUERY TO EXECUTION

SELECT name, count(*) as talks FROM buzzwords.speakers
WHERE room = ‘kessel’ AND year = 2018 GROUP BY name ORDER BY name

PARSER ANALYZER PLANNER EXECUTOR

=" CrateDB

22

FROM QUERY TO EXECUTION

SELECT name, count(*) as talks FROM buzzwords.speakers
WHERE room = ‘kessel’ AND year = 2018 GROUP BY name ORDER BY name

PARSER ANALYZER PLANNER EXECUTOR

=" CrateDB

22

FROM QUERY TO EXECUTION

SELECT name, count(*) as talks FROM buzzwords.speakers
WHERE room = ‘kessel’ AND year = 2018 GROUP BY name ORDER BY name

PARSER ANALYZER PLANNER EXECUTOR

=" CrateDB

FROM QUERY TO EXECUTION

SEL

WH

DIFFERENT PARTS IS THE
QUERY COMPOSED OF?

table buzzwords.speakers

—CT name, count(*) as talks FROM buzzwords.speakers

—RE room = "kessel’ AND year = 2018 GROUP BY name OR
PARSER ANALYZER PLANNER
WHAT WHAT DO THESE HOW CAN WE

SELECT

PARTS REFER TO AND
WHAT DO THEY MEAN? INFORMATION?
HOW CAN WE DO THAT

EFFICIENTLY?

Field(name), CountAgg

FROM WHERE

Sield(name) = 'kessel’,
-ield(yeaer) = 2018

GROUP BY ORDER BY

Field(name) Field(name)

-R BY name

RETRIEVE THE DESIRED

EXECUTOR

HOW TO

22

EXECUTE A PLAN AND

RECEIVE RESULTS?

CrateDB

FROM QUERY TO EXECUTION

SEL

WH

DIFFERENT PARTS IS THE
QUERY COMPOSED OF?

table buzzwords.speakers

—CT name, count(*) as talks FROM buzzwords.speakers

—RE room = "kessel’ AND year = 2018 GROUP BY name OR
PARSER ANALYZER PLANNER
WHAT WHAT DO THESE HOW CAN WE

SELECT

PARTS REFER TO AND
WHAT DO THEY MEAN? INFORMATION?
HOW CAN WE DO THAT

EFFICIENTLY?

COLLECT

Field(name), CountAgg

FROM WHERE
Sield(name) = 'kessel’,
-ield(yeaer) = 2018

HASH AGGREGATE

ORDER BY

GROUP BY ORDER BY

Field(name) Field(name)

-R BY name

RETRIEVE THE DESIRED

EXECUTOR

HOW TO

22

EXECUTE A PLAN AND

RECEIVE RESULTS?

CrateDB

22

FROM QUERY TO EXECUTION

SELECT name, count(*) as talks FROM buzzwords.speakers
WHERE room = ‘kessel’ AND year = 2018 GROUP BY name ORDER BY name

PARSER ANALYZER PLANNER EXECUTOR

WHAT WHAT DO THESE HOW CAN WE HOW TO
DIFFERENT PARTS IS THE PARTS REFER TO AND RETRIEVE THE DESIRED EXECUTE A PLAN AND
QUERY COMPOSED OF? WHAT DO THEY MEAN? INFORMATION? RECEIVE RESULTS?

HOW CAN WE DO THAT
EFFICIENTLY?

SELECT

COLLECT
Field(name), CountAgg
HASH AGGREGATE
FROM WHERE ORDER BY —_— " —

Sield(name) = 'kessel’,
-ield(yeaer) = 2018
GROUP BY ORDER BY

Field(name) Field(name) CrateDB

table buzzwords.speakers

FROM QUERY TO EXECUTION

CLIENT

NODE?2

NODES3

I-------

NODE1

NODEA4

NODES

23

CrateDB

ARCHITECTURE HIGHLIGHTS

Distributed storage / Distributed

query execution
Masterless

Replication

Only ephemeral storage needed

(Container aware)

Optimized for search: Indexing of

all fields with Lucene (tuneab

e)

NODET

NODE?2

NODES3

NODEA4

24

CrateDB

HANDS-ON
== CrateDB

26

WHAT CAN YOU DO WITH CRATEDB?

Monitoring with realtime analysis (loT, Industry 4.0, Cyber Security)

Data Science
ICEINFAEINVEIE
Text Analysis

Time Series Analysis

Geospatial Queries

CrateDB

Plastic bottle manufacturer for food,

drinks, cosmetics, cleaning products

Employs 18,300 employees at 172
locations across 45 countries.

Real-time insights into the manutfacturing
Orocess

Throughput, failure rates, machine
maintenance

Lower operational costs

27

CrateDB

CrateDB Web Interface

B Cluster: demo
/> Health Replicated Data Available Data Total Records
'good 100.0% 100.0% 11.5 Billion
E Underrepl. Records Unavail. Records
0 0]
o] J
o0
;iﬁ Cluster Load ® Load 1 ® Load5 ® Load 15
B 215
. - DEMO
[
2.05
@ 2.00

1.95
1.90

\ £
. V. '
1.85 ‘
1.80 V.

CrateDB Web Interface

CrateDB Web Interface

LR AEERR R CEERRRIECCEEERRIT RO UEEERT T TEET My

LTI EEEEETNVEEEEEC A TR TR

CrateDB Web Interface

CONCLUSION
== CrateDB

33

WHAT WE HAVE LEARNED

Elasticsearch is a distributed search engine built on top of Lucene
CrateDB is a distributed SQL database on top of Elasticsearch/Lucene

CrateDB is pertect when you
want or have to use realtime SQL
store large amounts of structured or unstructured data

have many thousands of queries per seconad

CrateDB

SEE FOR YOURSELF!

Try out CrateDB

Download at crate.io/download

or$ curl try.crate.io | bash
or $ docker run crate

or build from source

github.com/crate/crate

Developer documentation: https://qi

,
Slack channel: https://crate. QZngnguprrtﬁlagk n/

34

Check out https://crate.io/docs

Contributions welcome

Check out the developer

documentation

Check out GitHub issues
Stackovertlow

Join our Slack channel

CrateDB

https://crate.io/download/
https://github.com/crate/crate
https://crate.io/docs
https://github.com/crate/crate/blob/master/devs/docs/index.rst
https://github.com/crate/crate/blob/master/devs/docs/index.rst
https://github.com/crate/crate/blob/master/devs/docs/index.rst
https://github.com/crate/crate/blob/master/devs/docs/index.rst
https://crate.io/docs/support/slackin/

== CrateDB

THANK YOU!

Maximilian Michels
@stadtlegende
max@crate.io

mxm@apache.org

mailto:max@crate.io
mailto:mxm@apache.org

