Event Sourcing at Yammer

Michat Rutkowski ()
Dmitry Stratiychuk ()
Philipp Fehre ()

Yammers

What is this talk about?

» Challenges Yammer faced

What is this talk about?

« Challenges Yammer faced
 Why event sourcing?
 How we’'ve rolled it out
 What we’ve learned

* The future

What is this talk about?

« How we’ve rolled it out

What is this talk about?

« What we’ve learned

What is this talk about?

 The future

What is Yammer?

An Enterprise Social Network facilitating better and faster
communication within an organization.

Office 365 Yammer B Microsoft Michal Rutkowski ‘
" ﬁ 2 Inbox ¥ Yammer Engineering vloined @ &
Search UNREAD 19 AL Q NEW CONVERSATIONS ~ ALL CONVERSATIONS ~ FILES NOTES
MICROSOFT GROUPS MICROSOFT GROUPS SEARCH
‘ Yann Asmand - June 3 at 6:10pm
o o Productionize vent I N e wed of vag ant o e Ateed heve wedy Search this group

* Yammer On-Call 10m * Yammer On-Call

Yammer Services Team Yammer Services Team t . INFO Edit

= Yammer Royal Engineering 1 -

¥ Yammer Engineering

B3 Yammer Royal Engineering - ‘Yammer Engineering Documents

Yammer Service Oriented Archite... . " Jun2 Yammer Service Oriented Archite... o ia e o ok .
Tech Lead Guide
Yo e Meriay = N Yammer Messaging Doman Team 2

Importa

@ ' ammer Managed - = @ Tammer Maraged Storage Now =

o . or
Engineer
Yammer Infrastructure Team Search for People ‘Yammer Infrastructure Team . Search for People

et e . - Project E "
. Philipp Fehre : ammer Se- ate 2 Philipp Fehre ‘

P — Software Development.. e e expand > New Hir Software Development...
O Yammer Team e O Yammer Team Yammer sio
® Yormmer Red p— = rammer Redmond 'ea Aggrega o
Yarmwrer Sea) er t Yammer Sea oma: 1 Yammer i -
Y Ruby Servi 2 i

‘ammer Ruby Services Yammer Ruby Services What M
Yoremer Aohatee - ’ Yommer Rebiable Data Storage Candida ‘ s Breyma
Venuner G \ostudiy g amemer eadershvg Vagrant
+ Create anew group v ‘ + Create a new group Gitand J ‘ -)
2% Discover more groups 2% Discover more groups Workfee
£ Michat Rutkowski o ‘ £ Michat Rutkowski o A/B testi ‘

Microsoft ‘ . — T s LCE 4 REPLY & SHARE

<5 ps So You'r

What is important?

 Our customers:

— SLA
— Performance

What is important?

» Velocity: Ability to build and A/B test features fast

The Team

We want to help rest of the engineering team in:
* building quality features fast,
» while meeting our SLA commitments

To that end we:
 drive discussion and adoption of architectural patterns
» adopt and if necessary build tooling to facilitate that

The Team

We want to help rest of the engineering team in:
* building quality features fast,
» while meeting our SLA commitments

To that end we:
» drive discussion and adoption of architectural patterns
» adopt and if necessary build tooling to facilitate that

Things we've been working on

» Better tooling and process for release management:
— Continuous delivery
— Load testing

Things we've been working on

» Best practices for service design and development:
— Testing for failure
— Ensuring QoS

Things we've been working on

» Better tooling and process for release management:
— Continuous delivery
— Load testing

» Best practices for service design and development:
— Testing for failure
— Ensuring QoS

* Inter-service integration patterns

Things we've been working on

» Better tooling and process for release management:
— Continuous delivery
— Load testing

» Best practices for service design and development:
— Testing for failure
— Ensuring QoS

* Inter-service integration patterns

Familiar Story

Familiar Story

(

™~

dmiiliar otor

Familiar Story

T

Familiar Story

—{] x
et

S =
L F

L
[JHJ

Familiar Story

Core Services Dependency Diagram

Last updated: May 16, 2013

graphie

\/
flatterie

feedie

prankie

whoville

partie
service

Familiar Story

That was mid-2013

Familiar Story

No one even tries to draw this diagram now!

Issues we’ve faced

Feature development become too slow:
* Too many inter-service dependencies

Issues we’ve faced

Feature development become too slow:
* Too many inter-service dependencies

» Overly chatty services
* Too many inter-team, cross-time-zone dependencies

Issues we’ve faced

Feature development become too slow:

* Too many inter-team, cross-time-zone dependencies

Issues we’ve faced

Meeting the SLA become much harder:

* Too many external dependencies on the read/write path
» Shared DB

* Un-expected, transitive dependencies

» Cascading failures (despite circuit breaking)

* Very easy to make a breaking code change

Issues we’ve faced

Meeting the SLA become much harder:

* Too many external dependencies on the read/write path
» Shared DB

* Un-expected, transitive dependencies

« Cascading failures (despite circuit breaking)

* Very easy to make a breaking code change

Issues we’ve faced

Meeting the SLA become much harder:

* Too many external dependencies on the read/write path
« Shared DB

» Un-expected, transitive dependencies

« Cascading failures (despite circuit breaking)

* Very easy to make a breaking code change

Issues we’ve faced

Meeting the SLA become much harder:

* Too many external dependencies on the read/write path
« Shared DB

» Un-expected, transitive dependencies

» Cascading failures (despite circuit breaking)

* Very easy to make a breaking code change

Issues we’ve faced

Meeting the SLA become much harder:

* Too many external dependencies on the read/write path
« Shared DB

» Un-expected, transitive dependencies

« Cascading failures (despite circuit breaking)

* Very easy to make a breaking code change

Event Sourcing

Presentation

Some options for
consuming events

|
O e

Date CartID
Customer Item key
Addvess Item name External
Quantity systems and
o= applications
Materialized View
- Published events
Porslst;d Q
even
Query for
Event store ° » current state

Replayed events

of entities

Event Sourcing

* One Data Owner Service
— Publishes Events
— Persists in DB

Event Sourcing

* View Services
— Consume Events
— Materialized Views (local DB)

Distributed Monolith

Core Services Dependency Diagram

Last updated: May 16, 2013

[+ {stcam]-

T4— feedie
graphie / v

flatterie

prankie

whoville

partie
service

Event Sourcing

-«

< View
b@%ﬂ Event Log

< View View

Event Sourcing

» Less runtime dependencies (SLA, performance)

* Less chattiness (performance, velocity)

» Loose Coupling (velocity, SLA)

« Events / Not Commands — (velocity vs. 1-1 coupling)
» Cheap to setup/backfill new service (velocity)

Event Sourcing

» Less chattiness (performance, velocity)

» Loose Coupling (velocity, SLA)

« Events / Not Commands — (velocity vs. 1-1 coupling)
» Cheap to setup/backfill new service (velocity)

Event Sourcing

* Less chattiness (performance, velocity)

» Loose Coupling (velocity, SLA)

« Events / Not Commands — (velocity vs. 1-1 coupling)
» Cheap to setup/backfill new service (velocity)

Event Sourcing

* Less chattiness (performance, velocity)

» Loose Coupling (velocity, SLA)

* Events / Not Commands — (velocity vs. 1-1 coupling)
» Cheap to setup/backfill new service (velocity)

Event Sourcing

» Cheap to setup/backfill new service (velocity)

Challenges

* We can’t make it happen overnight

Challenges

* There are a lot of risks:
— Can this pattern deliver?
— How long will it take to learn?
— What stack to use?
— Cost of tech onboarding?

Two challenges

» Validate Event Sourcing
« Choose and on-board appropriate tech stack

ldeally we can decouple the two, to:
 Validate early

* Deliver value early

* Invest in tech once idea validated

Two challenges

ldeally we can decouple the two, to:
 Validate early

* Deliver value early

* Invest in tech once idea validated

Our approach

Leverage familiar legacy to minimize tech risk.

Our approach

* Not the greatest design:
— centralization
— http proxies, why?

 Built of familiar components we are already operating
* Minimizes tech risk, letting us focus on validation
* Short term, centralization allows for faster iteration

Our approach

* Not the greatest design:
— centralization
— http proxies, why?

» Built of familiar components we are already operating
* Minimizes tech risk, letting us focus on validation
« Short term, centralization allows for faster iteration

Our approach

* Not the greatest design:
— centralization
— http proxies, why?

 Built of familiar components we are already operating
* Minimizes tech risk, letting us focus on validation
* Short term, centralization allows for faster iteration

Our approach

* Not the greatest design:
— centralization
— http proxies, why?

 Built of familiar components we are already operating
* Minimizes tech risk, letting us focus on validation
« Short term, centralization allows for faster iteration

What did we build?

» We've established an APl and semantics

» Tooling for consumer/event monitoring/management
* End-to-end test suite (focus on failure handling)

» Automated load and throughput tests

Will help us in the future, when we want to iterate on the
tech stack.

What did we build?

* We've established an APl and semantics

 Tooling for consumer/event monitoring/management
* End-to-end test suite (focus on failure handling)

» Automated load and throughput tests

Will help us in the future, when we want to iterate on the
tech stack.

What did we build?

* We've established an APl and semantics

» Tooling for consumer/event monitoring/management
* End-to-end test suite (focus on failure handling)

» Automated load and throughput tests

Will help us in the future, when we want to iterate on the
tech stack.

What did we build?

» We've established an APl and semantics

» Tooling for consumer/event monitoring/management
» End-to-end test suite (focus on failure handling)

» Automated load and throughput tests

Will help us in the future, when we want to iterate on the
tech stack.

What did we build?

» We've established an APl and semantics

» Tooling for consumer/event monitoring/management
* End-to-end test suite (focus on failure handling)

» Automated load and throughput test

Will help us in the future, when we want to iterate on the
tech stack.

Easy to generate dashboards

Consuming
Consumer Lag Event Latency Event Processing Rate
50 % 400k
o
>
3
4045
5 300k
2
304 E
z 200k
20
100k
104
04 0
T T T T 1 1
03:30 04 PM 04:30 05 PM L] o
Committing Errors Processing Errors Retries Count
1.0q 4 ©
0.84w 5%
z g
£ =
0.6 £ 15
2 3
3
0.447
& 2
0.2+ 1
0.0 : : . , © ¢ : T |
04 PM 04:30 05 PM A

Consumer Latency

Consumer Retriable Failures

O 1.09
< c
[+] 8
*§ 0.8-!%
@ w
@ g
= =
= 0.6 S
w
0.4+
0.2+
o

roubleshooting bad events

All Failing m

Consumer Topic Partition Host

pulse_ogo_create message 174 ventspout-
1.az22.dm2

stored_feeds_delivery_thread_and_group_delivered message 60 ventspout-
1.az1.dm2

¥ from the SOA team

Read Lag

43107 0

53668 0

Latency

6 hours

afew
seconds

Uncommitted Retries Actions

@ - G

1"

"

- 203

Projects that benefited immediately

Bl
L

{=
=

Problems we’ve faced

* What to publish?

— Whole pieces of data (potentially unbounded size)

— 1Ds, but requires:

* Immutable versioned data
« Uniform Resource Identifiers (REST done well)

Problems we’ve faced

* There will be multiple publishers
— Consumers need to deal with it gracefully

Adoption Challenges

* It is a big paradigm shift, it takes time for knowledge to
propagate through an organization

Adoption Challenges

* We are not experts either, we are still learning

Adoption Challenges

« But good news, even if imperfect, it already had big
impact on how we work

What we’ve discovered - Workflows

Data
[o } [oua }
‘]
Inbox
4 N {]
Messace Creation P[Event Log
. /

What we’ve discovered - Workflows

-] (=
— A =
\MM cmﬂj .[cvent Log

What we’ve discovered - Workflows

Workflows

* Transformation logic outside of view service boundaries

Workflows

« Stream Processing / CQRS

Workflows

* We can express them, but too much plumbing

Workflows

* We need a higher level of abstraction

What is the Future?

* Move to a fully managed solution

* Provide Rx bindings

 Remove centralization/http proxy components
* Find a solution for Workflows

Migration To Event Hubs

Azure Event Hubs

» Event Log offering from Azure (Kafka, Kinesis)
— Automated failover within a region
— No provisioning concerns, simply purchase TUs

Migration To Event Hubs

Azure Event Hubs

« AMQP 1.0 protocol

Migration To Event Hubs

» Successfully used internally and externally

Migration To Event Hubs

* Our Metrics pipeline already uses it

RxJava SDK

» Using Azure SDK
— backed by Protond
— Offset tracking
— Multi-host Consumer with Failover

RxJava SDK

 Raising the level of abstraction:
— Data Stream in Event Hubs available as an Observable

Workflows

 Azure Service Fabric Reliable Actors

Workflows

- High Level PAAS offering from Azure

Workflows

» Based on Project Orleans

Workflows

» Successfully used by HALO

Summary

» Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith

Summary

* |t addressed both architectural and org aspects

Summary

» We did so in an iterative fashion focusing
— Reducing risk
— Delivering early

Summary

* This is ongoing work

Thank you!

Any Questions?

