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What is Yammer?

An Enterprise Social Network facilitating better and faster
communication within an organization.
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What is important?

 Our customers:

— SLA
— Performance



What is important?

» Velocity: Ability to build and A/B test features fast



The Team
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» while meeting our SLA commitments
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 drive discussion and adoption of architectural patterns
» adopt and if necessary build tooling to facilitate that
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Familiar Story

Core Services Dependency Diagram

Last updated: May 16, 2013

graphie

\/
flatterie

feedie

prankie

whoville

partie
service




Familiar Story

That was mid-2013



Familiar Story

No one even tries to draw this diagram now!



Issues we’ve faced

Feature development become too slow:
* Too many inter-service dependencies
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Event Sourcing
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Event Sourcing

* One Data Owner Service
— Publishes Events
— Persists in DB



Event Sourcing

* View Services
— Consume Events
— Materialized Views (local DB)



Distributed Monolith

Core Services Dependency Diagram

Last updated: May 16, 2013
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Event Sourcing
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Event Sourcing

» Less runtime dependencies (SLA, performance)

* Less chattiness (performance, velocity)

» Loose Coupling (velocity, SLA)

« Events / Not Commands — (velocity vs. 1-1 coupling)
» Cheap to setup/backfill new service (velocity)
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Event Sourcing

» Cheap to setup/backfill new service (velocity)



Challenges

* We can’t make it happen overnight



Challenges

* There are a lot of risks:
— Can this pattern deliver?
— How long will it take to learn?
— What stack to use?
— Cost of tech onboarding?



Two challenges

» Validate Event Sourcing
« Choose and on-board appropriate tech stack

ldeally we can decouple the two, to:
 Validate early

* Deliver value early

* Invest in tech once idea validated
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Our approach

Leverage familiar legacy to minimize tech risk.




Our approach

* Not the greatest design:
— centralization
— http proxies, why?

 Built of familiar components we are already operating
* Minimizes tech risk, letting us focus on validation
* Short term, centralization allows for faster iteration
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What did we build?

» We've established an APl and semantics

» Tooling for consumer/event monitoring/management
* End-to-end test suite (focus on failure handling)

» Automated load and throughput tests

Will help us in the future, when we want to iterate on the
tech stack.
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Easy to generate dashboards
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roubleshooting bad events
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Problems we’ve faced

* What to publish?

— Whole pieces of data (potentially unbounded size)

— 1Ds, but requires:

* Immutable versioned data
« Uniform Resource Identifiers (REST done well)



Problems we’ve faced

* There will be multiple publishers
— Consumers need to deal with it gracefully



Adoption Challenges

* It is a big paradigm shift, it takes time for knowledge to
propagate through an organization



Adoption Challenges

* We are not experts either, we are still learning



Adoption Challenges

« But good news, even if imperfect, it already had big
impact on how we work



What we’ve discovered - Workflows
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What we’ve discovered - Workflows
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What we’ve discovered - Workflows




Workflows

* Transformation logic outside of view service boundaries



Workflows

« Stream Processing / CQRS



Workflows

* We can express them, but too much plumbing



Workflows

* We need a higher level of abstraction



What is the Future?

* Move to a fully managed solution

* Provide Rx bindings

 Remove centralization/http proxy components
* Find a solution for Workflows



Migration To Event Hubs

Azure Event Hubs

» Event Log offering from Azure (Kafka, Kinesis)
— Automated failover within a region
— No provisioning concerns, simply purchase TUs



Migration To Event Hubs

Azure Event Hubs

« AMQP 1.0 protocol



Migration To Event Hubs

» Successfully used internally and externally



Migration To Event Hubs

* Our Metrics pipeline already uses it



RxJava SDK

» Using Azure SDK
— backed by Protond
— Offset tracking
— Multi-host Consumer with Failover



RxJava SDK

 Raising the level of abstraction:
— Data Stream in Event Hubs available as an Observable



Workflows

 Azure Service Fabric Reliable Actors



Workflows

- High Level PAAS offering from Azure



Workflows

» Based on Project Orleans



Workflows

» Successfully used by HALO



Summary

» Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith



Summary

* |t addressed both architectural and org aspects



Summary

» We did so in an iterative fashion focusing
— Reducing risk
— Delivering early



Summary

* This is ongoing work



Thank you!

Any Questions?



