cloudera

Apache Kudu*: Fast Analytics on Fast Data

Todd Lipcon (Kudu team lead) – todd@cloudera.com

@tlipcon

Tweet about this talk: @ApacheKudu or #kudu

* Incubating at the Apache Software

Apache Kudu Storage for Fast Analytics on Fast Data

 New updatable column store for Hadoop

 Apache-licensed open source

Beta now available

Why Kudu?

Current Storage Landscape in Hadoop

HDFS (GFS) excels at:

- Batch ingest only (eg hourly)
- Efficiently scanning large amounts of data (analytics)

HBase (BigTable) excels at:

- Efficiently finding and writing individual rows
- Making data mutable

Gaps exist when these properties are needed simultaneously

Kudu Design Goals

 High throughput for big scans

Goal: Within 2x of Parquet

 Low-latency for short accesses

Goal: 1ms read/write on SSD

Changing Hardware landscape

- Spinning disk -> solid state storage
 - NAND flash: Up to 450k read 250k write iops, about 2GB/sec read and 1.5GB/sec write throughput, at a price of less than \$3/GB and dropping
 - 3D XPoint memory (1000x faster than NAND, cheaper than RAM)
- RAM is cheaper and more abundant:
 - 64->128->256GB over last few years
- Takeaway: The next bottleneck is CPU, and current storage systems weren't designed with CPU efficiency in mind.

What's Kudu?

Scalable and fast tabular storage

Scalable

- Tested up to 275 nodes (~3PB cluster)
- Designed to scale to 1000s of nodes, tens of PBs

Fast

- Millions of read/write operations per second across cluster
- Multiple GB/second read throughput per node
- Tabular
 - **SQL-like** schema: **finite number** of **typed** columns (unlike HBase/Cassandra)
 - Fast ALTER TABLE
 - "NoSQL" APIs: Java/C++/Python or SQL (Impala/Spark/etc)

Use cases and architectures

Kudu Use Cases

Kudu is best for use cases requiring a simultaneous combination of sequential and random reads and writes

Time Series

- Examples: Stream market data; fraud detection & prevention; network monitoring
- OWorkload: Insert, updates, scans, lookups

Online Reporting

- OExamples: ODS
- OWorkload: Inserts, updates, scans, lookups

Real-Time Analytics in Hadoop Today

Fraud Detection in the Real World = Storage Complexity

Real-Time Analytics in Hadoop with Kudu

immediately for

analytics or

operations

Xiaomi use case

- World's 4th largest smart-phone maker (most popular in China)
- Gather important RPC tracing events from mobile app and backend service.
- Service monitoring & troubleshooting tool.
- High write throughput
 - >20 Billion records/day and growing
- Query latest data and quick response
 - Identify and resolve issues quickly
- Can search for individual records
 - Easy for troubleshooting

Xiaomi Big Data Analytics Pipeline

Before Kudu

- Long pipeline high latency(1 hour ~ 1 day), data conversion pains
- No ordering Log arrival(storage) order not exactly logical order © Cloudera, Inc. All rights reserved.

Xiaomi Big Data Analysis Pipeline

Simplified With Kudu

- ETL Pipeline(0~10s latency)
 Apps that need to prevent backpressure or require ETL
- Direct Pipeline(no latency)
 Apps that don't require ETL and no backpressure issues

How it works

Replication and fault tolerance

Tables, Tablets, and Tablet Servers

- Table is horizontally partitioned into tablets
 - Range or hash partitioning
 - •PRIMARY KEY (host, metric, timestamp) DISTRIBUTE BY HASH(timestamp) INTO 100 BUCKETS
- Each tablet has N replicas (3 or 5), with Raft consensus
 - Automatic fault tolerance
 - MTTR: ~5 seconds
- Tablet servers host tablets on local disk drives

Metadata and the Master

Replicated master

- Acts as a tablet directory
- Acts as a catalog (which tables exist, etc)
- Acts as a load balancer (tracks TS liveness, re-replicates underreplicated tablets)

Not a bottleneck

super fast in-memory lookups

Hey Master! Where is the row for 'tlipcon' in table "T"?

servers {Z,Y,X}.

Master Master tablet Server A LEADER

It's part of tablet 2, which is on

Master Master tablet Server B **FOLLOWER**

Master Server C Master tablet **FOLLOWER**

Master tablet

UPDATE tlipcon SET col=foo

Client

How it works

Columnar storage

Columnar storage

Twitter Firehose Table			
tweet_id	user_name	created_at	text
INT64	STRING	TIMESTAMP	STRING
23059873	newsycbot	1442825 158	Visual Explanation of the Raft Consensus Algorithm http://bit.ly/1DOUac0 (cmts http://bit.ly/1HKmjfc)
22309487	RideImpala	1442826 100	Introducing the Ibis project: for the Python experience at Hadoop Scale
23059861	fastly	1442827 994	Missed July's SF @papers_we_love? You can now watch @el_bhs talk about @google's globally-distributed database: http://fastly.us/1eVz8MM
23010982	llvmorg	1442828 527	LLVM 3.7 is out! Get it while it's HOT! http://llvm.org/releases/download.html#3.7.0

Tweet_id {250598 73, 2230948 7, 2305986 1, 2301098 2}

User_name

{newsyc bot, RideImpa la, fastly, Ilvmorg}

Created at

{144282515 8, 1442826100 , 1442827994 , 1442828527 text

{Visual exp..., Introducing ..., Missing July..., LLVM 3.7....}

Columnar storage


```
Created_at
{144282515
8,
1442826100
,
1442827994
,
1442828527
}
```

```
{Visual exp..., Introducing . ., Missing July..., LLVM 3.7....}
```

LECT COUNT(*) FROM tweets WHERE user_name = 'newsycbot';

Columnar compression

Created_at

{144282515 8, 1442826100 , 1442827994 , 1442828527

Created_at	Diff(created_a t)
144282515 8	n/a
144282610 0	942
144282799 4	1894
144282852 7	533
64 bits each	11 bits each

- Many columns can compreto
 a few bits per row!
- Especially:
 - Timestamps
 - Time series values
 - Low-cardinality strings
- Massive space savings ar throughput increase!

Integrations

Spark DataSource integration (WIP)

vailable in Kudu 0.8.0, but more stable in 0.9.0+

Impala integration

- CREATE TABLE ... DISTRIBUTE BY HASH(col1) INTO 16 BUCKETS AS SELECT ... FROM ...
- INSERT/UPDATE/DELETE

 Not an Impala user? Community working on other integrations (Hive, Drill, Presto, etc)

MapReduce integration

- Multi-framework cluster (MR + HDFS + Kudu on the same disks)
- KuduTableInputFormat / KuduTableOutputFormat
 - Support for pushing predicates, column projections, etc

27

Performance

TPC-H (Analytics benchmark)

- 75 server cluster
 - 12 (spinning) disk each, enough RAM to fit dataset
 - TPC-H Scale Factor 100 (100GB)
- Example query:
 - SELECT n_name, sum(l_extendedprice * (1 l_discount)) as revenue FROM customer, orders, lineitem, supplier, nation, region WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey AND l_suppkey = s_suppkey AND c_nationkey = s_nationkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name = 'ASIA' AND o_orderdate >= date '1994-01-01' AND o_orderdate < '1995-01-01' GROUP BY n_name ORDER BY revenue desc;</p>

TPC-H SF 100 @75 nodes

- Kudu outperforms Parquet by 31% (geometric mean) for RAM-resident data

Versus other NoSQL storage

- Phoenix: SQL layer on HBase
- 10 node cluster (9 worker, 1 master)
- TPC-H LINEITEM table only (6B rows)

What about NoSQL-style random access? (YCSB)

• YCSB 0.5.0-snapshot

10 node cluster(9 worker, 1 master)

- 100M row data set
- 10M operations each workload

Throughput (ops/sec)

Getting started

Project status

- Open source beta released in September
- Latest release 0.9.0 being voted upon now
 - Usable for many applications (Xiaomi in production)
 - Have not experienced unrecoverable data loss, reasonably stable (almost no crashes reported). Users testing up to 200 nodes so far.
 - Still requires some expert assistance, and you'll probably find some bugs
 - Aiming for 1.0 later this summer
- Part of the Apache Software Foundation Incubator
 - Community-driven open source process

Apache Kudu (incubating) Community

cloudera

Getting started as a user

- http://getkudu.io
- user@kudu.incubator.apache.org
- http://getkudu-slack.herokuapp.com/
- Quickstart VM
 - Easiest way to get started
 - Impala and Kudu in an easy-to-install VM
- CSD and Parcels
 - For installation on a Cloudera Manager-managed cluster

Getting started as a developer

- http://github.com/apache/incubator-kudu
- Code reviews: http://gerrit.cloudera.org
- Public JIRA: http://issues.apache.org/jira/browse/KUDU
 - Includes bugs going back to 2013. Come see our dirty laundry!
- Mailing list: dev@kudu.incubator.apache.org
- Apache 2.0 license open source
- Contributions are welcome and encouraged!

http://getkudu.io/
@ApacheKududera, Inc. All rights reserved.