Learning the Learner,
Using Machine Learning to
Performance of Machine Le:
Algorithms

Ira Cohen, Chief Data Scientist
6t June, 2016

Gartner




Machine Learning used to be about publishing papers at NIPS and
ICML...




The coming of age of Machine Learning...
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and now it is sexy...

DATA SCIENTIST




The Practical Machine Learning Process
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The Practical Machine Learning Process:
The race for automation...

1

Define
problem

5

Track and
monitor

Collect and
prepare
data

3

Deploy to Train/Test
Production models
TensorFlow




Lots of tools/platforms/solutions !
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The Practical Machine Learning Process -
The overlooked 5t step...
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Monitoring and Tracking

But How to Track and Monitor?

Manually is NOT an option...

Define performance Collect metrics Track for unexpected
metrics and expected continuously in production changes in metrics
behavior

0 Anodot 00




Anomaly Detection




Anodot’s Business Incident Detection Platform
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Detecting Business Incidents: Anomaly Detection
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Anomaly detection: Detecting the Unknowns [] Saves Time +

Money

Web Services Industrial loT

Detecting business incidents + unknown

Proactive Maintenance

business opportunities

Detecting issues in factories/machines

Security Machine Learning

Detection of unknown breach/attack Closing the “Machine Learning” loop
patterns Tracking and detecting "unknowns” not modeled
during training




Detecting Unknowns of ML in Production: Anomaly

Detection

Classification accuracy over time




What is Anomaly Detection?




Find the Anomaly
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Anomaly Detection

* |l posed problem

* What is an anomaly?




Anomaly Detection in Time Series Signals

Unexpected change of temporal pattern of one or
more time series signals.




Anomaly Detection Methods




Anomaly Detection: General Scheme

General scheme

Model the normal Devise a statistical test to Apply the test for each
behavior of the metric(s) determine if samples are sample. Flag as anomaly
using a statistical model explained by the model. iIf it does not pass the test

0 Anodot




Online Anomaly Detection Algorithms

Update model
parameters with
each new sample

For each new
sample test if
anomaly

Initialize model




Example Online Models/Algorithms

Simple Moving
Average

DoublelTriple
exponential (Holt-
Winters)

Single
exponential
forgetting

Kalman Filters +
ARIMA and
variations




Batch Anomaly Detection

5 N

Collect Segment samples Cluster segments Mark as anomalies
historical to similarly according to some segments that are in
samples behaving segments similarity measure small or no clusters

0 Anodot (< JEEN >




Example Batch Anomaly Detection Methods

Multi-model distributions:

Gaussian models
Generalized
mixture models

One sided SVM

Clustering methods
(K-Means, DBScan, Mean-
Shift)

MOST COMMON IN USE

Hidden Markov Models




Anodot’s Automatic Anomaly Detection

Metrics
Collection - Normal Abnormal Behavioral Feedback
Universal, > behavior > behavior > Topology > Based

scale to learning learning Learning Learning

millions




Large Scale Anomaly Detection System Architecture
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3.3 billion daily samples
75,000,000 metrics
150,000,000 models
* updated with each sample
300,000,000 correlation links
* Updated daily
7,000,000 seasonal models
* Updated daily

30 types of learning algorithms
* Metric classification,
seasonality detection, trend,
baseline models, clustering
algos, LSH, ...
And counting...




Tracking the performance of the algorithms: With Metrics

Seasonality detection
distribution

Seasonal metric distribution

Model switching rate

Lo Anomaly quality scores
and distribution

Maodel switch rate anomaly_index - anomalies by score and rollup

Anomaly as a

result of
deployment




Alert when results are Abnormal: New type of model required

[High] Abnormal Increase in number of SRS N M Anodot

Anodot detected that 1 related alerts were tiggered at 05/31/2016 07:00:00

| ';;ﬂ &
[High] Abnormal Increase in number of Alert Seltings
anomalous metrics
Al least 50% increase in number of anomalous metrics for all of LiveParson's metrics.
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Alert when results are Abnormal:

Anomaly in Seasonality Detection Distribution

Mey 25 + 5 days




* Automated anomaly detection
* Closing the loop of the
machine learning process
* The first step in full automation
of the learning process
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