
LECTOR IN CODIGO
ALVARO VIDELA

EXPLORE THE RELATION BETWEEN THE
PROCESS OF WRITING COMPUTER
PROGRAMS WITH THAT OF WRITING
LITERARY WORKS OF FICTION.

UMBERTO ECO

LECTOR IN
FABULUA

SIX WALKS IN THE
FICTIONAL WOODS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER* PROGRAMMERS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER* PROGRAMMERS?

BEST UNKNOWN PAPER

“A PROGRAMMER DOES NOT
PRIMARILY WRITE CODE; RATHER,
HE PRIMARILY WRITES TO ANOTHER
PROGRAMMER ABOUT HIS
PROBLEM SOLUTION”

“PROGRAMS MUST BE
WRITTEN FOR PEOPLE TO
READ, AND ONLY INCIDENTALLY
FOR MACHINES TO EXECUTE”

LITERATURE AND
PROGRAMMING

LITERATE
PROGRAMMING

Donald Knuth

“INSTEAD OF IMAGINING THAT OUR MAIN
TASK IS TO INSTRUCT A COMPUTER WHAT
TO DO, LET US CONCENTRATE RATHER ON
EXPLAINING TO HUMAN BEINGS WHAT
WE WANT A COMPUTER TO DO”

LITERATE PROGRAMMING

▸ Introduces the WEB system

▸ Write documentation along with the code

▸ Partially adopted by tools like JavaDocs and the like

EXPLAINS HOW WEB WORKS,
BUT NOT HOW TO WRITE CODE
THAT’S EASIER TO UNDERSTAND

CYBERTEXT:
PERSPECTIVES ON
ERGODIC LITERATURE

Aarseth, Espen J

“[…] A SEARCH FOR LITERARY VALUE
IN TEXTS THAT ARE NEITHER INTENDED
NOR STRUCTURED AS LITERATURE
WILL ONLY OBSCURE THE UNIQUE
ASPECTS OF THESE TEXTS AND
TRANSFORM A FORMAL INVESTIGATION
INTO AN APOLOGETIC CRUSADE.”

“PROGRAMS ARE NORMALLY WRITTEN
WITH TWO KINDS OF RECEIVERS IN
MIND: THE MACHINES AND OTHER
PROGRAMMERS. THIS GIVES RISE TO A
DOUBLE STANDARD OF AESTHETICS,
OFTEN IN CONFLICT: EFFICIENCY AND
CLARITY”

“A DIFFERENCE BETWEEN WRITING AND
PROGRAMMING, [IS THAT] IN
PROGRAMMING, THE PROGRAMMER GETS
FEEDBACK VERY EARLY ON WHETHER THE
PROGRAM TEXT IS EXECUTABLE, DURING
COMPILING. FURTHERMORE, THEY GET
FEEDBACK ON WHETHER THE PROGRAM IS
WORKING AS INTENDED”

Hermans, Felienne, and Marlies Aldewereld

ABOUT EARLY FEEDBACK

▸ What does the program means?

▸ What process of the real world is trying to represent?

▸ How the problem was solved?

COMPARE THIS WITH
MUSIC INTERPRETATION

NOTES ON THE GUITAR

ABEL CARLEVARO

“CORRECT GUITAR PLAYING
IS UNCONCEIVABLE WITHOUT
CORRECT FINGERING”

Abel Carlevaro

ABEL CARLEVARO

ABOUT EARLY FEEDBACK

▸ Knuth: Is 2 a random number?

▸ Is a square function that returns a hardcoded 25 a correct
implementation?

▸ As long as we provide [5, -5] as arguments, it is correct.

▸ TDD advocates this kind of program building

“PROGRAM TESTING CAN BE USED
TO SHOW THE PRESENCE OF BUGS,
BUT NEVER TO SHOW THEIR
ABSENCE!”

Edsger Dijkstra

ABOUT EARLY FEEDBACK

▸ Knuth: Is 2 a random number?

▸ Is a square function that returns a hardcoded 25 a correct
implementation?

▸ As long as we provide [5, -5] as arguments, it is correct

▸ TDD advocates this kind of program building

▸ QuickCheck tries to alleviate this problem

HOW CAN WE SHARE
KNOWLEDGE BETWEEN
PROGRAMMERS?

“THE CODE SPEAKS
FOR ITSELF”

WE ARE NOT
ADVERSARIES

IMAGINE IF EVERY TIME WE
TRIED TO READ A BOOK, WE
HAD TO PLAY CODE BREAKERS?

UNLESS WE WERE
READING
FINNEGANS WAKE…

PROGRAMMING AS
THEORY BUILDING

Peter Naur

“[…] A PERSON WHO HAS OR POSSESSES
A THEORY IN THIS SENSE KNOWS HOW TO
DO CERTAIN THINGS AND IN ADDITION CAN
SUPPORT THE ACTUAL DOING WITH
EXPLANATIONS, JUSTIFICATIONS, AND
ANSWERS TO QUERIES, ABOUT THE
ACTIVITY OF CONCERN”

“[…] WHAT HAS TO BE BUILT BY
THE PROGRAMMER IS A THEORY
OF HOW CERTAIN AFFAIRS OF THE
WORLD WILL BE HANDLED BY, OR
SUPPORTED BY, A COMPUTER
PROGRAM”

THIS THEORY IS VERY HARD
TO SHARE, IT WON’T BE
REFLECTED IN
DOCUMENTATION OR THE
PROGRAM TEXT

HOW CAN WE SHARE
THIS THEORY?

THE
ENCYCLOPEDIA

THE ENCYCLOPEDIA

▸ There’s the Encyclopedia

▸ And there’s the “encyclopedia”

▸ All the world’s knowledge vs. my knowledge

“THE COMPETENCE OF THE
DESTINATARY IS NOT NECESSARILY
THAT OF THE SENDER”

ABSENCE OF
DETAILS

WE FILL IN DETAILS FROM
OUR OWN ENCYCLOPEDIA

THE MODEL
READER

MODEL READER

▸ Not the empirical reader

▸ Lives in the mind of the author (the empirical one)

▸ It’s built as the author writes the story

▸ Helps the author decide how much detail to include in the
story

DOGS MUST BE CARRIED ON ESCALATOR

▸ Does it mean that you must carry a dog in the escalator?

▸ Are you going to be banned from the escalator unless you
find a stray dog to carry?

▸ “Carried” is to be taken metaphorically and help dogs get
through life?

DOGS MUST BE CARRIED ON ESCALATOR

▸ How do I know this is not a decoration?

▸ I need to understand that the sign has been placed there
by some authority

▸ Conventions: I understand that “escalator” means this
escalator and not some escalator in Paraguay

▸ “Must be” means must be now

TEXTUAL
COOPERATION

A TEXT IS A LAZY (OR ECONOMIC)
MECHANISM THAT LIVES ON THE
SURPLUS VALUE OF MEANING
INTRODUCED BY THE RECIPIENT

“A TEXT WANTS SOMEONE
TO HELP IT WORK”

READING IS ESSENTIALLY A WORK
OF COOPERATION BETWEEN THE
AUTHOR AND THE READER

A STRATEGIC GAME
BETWEEN AUTHOR AND
READER

NAPOLEON VS
WELLINGTON

DEVICES TO HELP PROGRAMMERS

▸ Type declarations

▸ Documentation

▸ Paratexts

PARATEXTS

"THE “PARATEXT” CONSISTS OF THE WHOLE
SERIES OF MESSAGES THAT ACCOMPANY
AND HELP EXPLAIN A GIVEN TEXT—
MESSAGES SUCH AS ADVERTISEMENTS,
JACKET COPY, TITLE, SUBTITLES,
INTRODUCTION, REVIEWS, AND SO ON."

Eco quoting Genette

PARATEXTS IN CODE

▸ Documentation

▸ package names

▸ folder structure

▸ pragmas (as in Haskell)

▸ imports (hiding things from the Prelude or overloading it)

▸ compiler flags

▸ running mode (test, production, benchmarks)

A PRIVILEGED PLACE OF A PRAGMATICS
AND A STRATEGY, OF AN INFLUENCE ON
THE PUBLIC, AN INFLUENCE THAT -
WHETHER WELL OR POORLY UNDERSTOOD
AND ACHIEVED - IS AT THE SERVICE OF A
BETTER RECEPTION FOR THE TEXT AND A
MORE PERTINENT READING OF IT

Gérard Genette

KEEPING PARATEXTS
RELEVANT

HOW TO KEEP
COMMENTS UP TO DATE?

NOT EVEN CERVANTES
ESCAPED THIS FATE

IN DON QUIXOTE, THE ORIGINAL
DESCRIPTION FOR CHAPTER X
DOESN’T MATCH THE CONTENTS OF
THE CHAPTER!

CONSIDER THIS
CODE

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

User user = new User('alice', 'secret', 'admin');
assertEquals(user.getUsername(), 'alice');
assertEquals(user.getPassword(), 'secret');
assertEquals(user.getRole(), 'admin');

THE PREVIOUS TEST CAN GIVE US
FEEDBACK ABOUT THE CODE WORKING AS
EXPECTED, BUT WE ARE STILL IN THE DARK
ABOUT WHAT IS THIS CLASS PURPOSE, THAT
IS, WHAT CONCEPT OF THE REAL WORLD
THIS CLASS IS TRYING TO REPRESENT.

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

package database;

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

package model;

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

“TO INDICATE WHAT IS AT STAKE, WE CAN
ASK ONE SIMPLE QUESTION AS AN
EXAMPLE: LIMITED TO THE TEXT ALONE AND
WITHOUT A GUIDING SET OF DIRECTIONS,
HOW WOULD WE READ JOYCE'S ULYSSES IF
IT WERE NOT ENTITLED ULYSSES?”

Gérard Genette

HOW TO BUILD THE MODEL
READER FOR OUR CODE?

METAPHORS

METAPHORICAL
MAPPINGS PRESERVE THE
THE COGNITIVE TOPOLOGY
OF THE SOURCE DOMAIN

IN A WAY CONSISTENT
WITH THE INHERENT
STRUCTURE OF THE
TARGET DOMAIN

METAPHORS TRANSFER
INFORMATION FROM
ONE CONCEPTUAL
DOMAIN TO ANOTHER

WHAT IS TRANSFERRED
IS A PATTERN RATHER
THAN DOMAIN
SPECIFIC INFORMATION

A METAPHOR CAN THUS BE
USED TO IDENTIFY A
STRUCTURE IN A DOMAIN
THAT WOULD NOT HAVE BEEN
DISCOVERED OTHERWISE

https://www.quantamagazine.org/algorithm-solves-graph-isomorphism-in-record-time-20151214

GRAPH ISOMORPHISM

THE SOCIAL CONSTRUCTION OF
REALITY: A TREATISE IN THE
SOCIOLOGY OF KNOWLEDGE

Berger, Peter L., and Thomas Luckmann

MICROSERVICES

MICROSERVICES

▸ Decentralised Governance

▸ Monolith vs. Microservice

▸ Isolation

▸ Collaboration

▸ Small is better - Big is cumbersome

▸ David vs. Goliath

ERLANG ANYONE?

“IN ANOTHER DIRECTION, ONE COULD ARGUE
THAT MICROSERVICES ARE THE SAME THING
AS THE ERLANG PROGRAMMING MODEL, BUT
APPLIED TO AN ENTERPRISE APPLICATION
CONTEXT”

WHAT’S ERLANG’S
ELEVATOR PITCH?

MAPS

ON BEAUTY
Noah Iliinsky

“[…] THAT FREED THE MAP OF ANY
ATTACHMENT TO ACCURATE
REPRESENTATION OF GEOGRAPHY AND LED
TO AN ABSTRACTED VISUAL STYLE THAT
MORE SIMPLY REFLECTED THE REALITIES
OF SUBWAY TRAVEL: ONCE YOU’RE IN THE
SYSTEM, WHAT MATTERS MOST IS YOUR
LOGICAL RELATIONSHIP TO THE REST OF
THE SUBWAY SYSTEM”

“THE FIRST AREA TO CONSIDER
IS WHAT KNOWLEDGE YOU’RE
TRYING TO CONVEY, WHAT
QUESTION YOU’RE TRYING TO
ANSWER, OR WHAT STORY
YOU’RE TRYING TO TELL”

“[…] THE NEXT
CONSIDERATION IS HOW THE
VISUALIZATION IS GOING TO BE
USED. THE READERS AND THEIR
NEEDS, JARGON, AND BIASES
MUST ALL BE CONSIDERED”

“THE READERS’ SPECIFIC
KNOWLEDGE NEEDS MAY NOT BE
WELL UNDERSTOOD INITIALLY,
BUT THIS IS STILL A CRITICAL
FACTOR TO BEAR IN MIND
DURING THE DESIGN PROCESS”

"IF YOU CANNOT, EVENTUALLY,
EXPRESS YOUR GOAL CONCISELY
IN TERMS OF YOUR READERS
AND THEIR NEEDS, YOU DON’T
HAVE A TARGET TO AIM FOR AND
HAVE NO WAY TO GAUGE YOUR
SUCCESS”

“OUR GOAL IS TO PROVIDE A
VIEW OF THE LONDON
SUBWAY SYSTEM THAT
ALLOWS RIDERS TO EASILY
DETERMINE ROUTES
BETWEEN STATIONS”

“UNDERSTANDING THE GOALS OF
THE VISUALIZATION WILL ALLOW
YOU TO EFFECTIVELY SELECT
WHICH FACETS OF THE DATA TO
INCLUDE AND WHICH ARE NOT
USEFUL OR, WORSE, ARE
DISTRACTING”

“[…] PARADIGMS SUCH AS OBJECT
ORIENTATION [INSPIRE] PRACTICAL
PHILOSOPHIES AND PROVIDES
HERMENEUTIC MODELS FOR ORGANIZING
AND UNDERSTANDING THE WORLD, BOTH
DIRECTLY (THROUGH PROGRAMED
SYSTEMS) AND INDIRECTLY (THROUGH THE
WORLDVIEWS OF COMPUTER ENGINEERS)”

Aarseth, Espen J

DATA AND REALITY: A TIMELESS
PERSPECTIVE ON PERCEIVING AND
MANAGING INFORMATION IN OUR
IMPRECISE WORLD

Kent, William

“AFTER A WHILE IT DAWNED
ON ME THAT THESE ARE ALL
JUST MAPS, BEING POOR
ARTIFICIALAPPROXIMATIONS
OF SOME REAL UNDERLYING
TERRAIN”

William Kent

THE MAP IS NOT
THE TERRITORY

“WHAT IS THE TERRITORY
REALLY LIKE? HOW CAN I
DESCRIBE IT TO YOU? ANY
DESCRIPTION I GIVE YOU
IS JUST ANOTHER MAP”

William Kent

class Person {
 String name;
 String age;

 User(String name, String age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {return name;}
 public String getAge() {return age;}
}

// This is not a person
class Person {
 String name;
 String age;

 User(String name, String age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {return name;}
 public String getAge() {return age;}
}

THANK YOU

REFERENCES

▸ Aarseth, Espen J. Cybertext: Perspectives on Ergodic Literature. Johns
Hopkins University Press, 1997.

▸ Beck, Kent. Test-Driven Development: by Example. Addison-Wesley,
2006.

▸ Berger, Peter L., and Thomas Luckmann. The Social Construction of
Reality: a Treatise in the Sociology of Knowledge. Penguin, 1991.

▸ Borges, Jorge Luis, and Andrew Hurley. Collected Fictions. Penguin
Books, 1999.

REFERENCES

▸ Carlevaro, Abel. Serie Didactica: Para Guitarra. Barry, 1966.

▸ Eagleton, Terry. Literary Theory: an Introduction. Blackwell Publishing,
2015.

▸ Eco, Umberto, and Anthony Oldcorn. From the Tree to the Labyrinth:
Historical Studies on the Sign and Interpretation. Harvard University
Press, 2014.

▸ Eco, Umberto. Lector in Fabula: La Cooperazione Interpretativa Nei
Testi Narrativi. Bompiani, 2016.

REFERENCES

▸ Eco, Umberto. Six Walks in the Fictional Woods. Harvard Univ. Press,
2004.

▸ Genette, Gérard. Paratexts: Thresholds of Interpretation. Cambridge
Univ. Press, 2001.

▸ Gärdenfors, Peter. Geometry of Meaning: Semantics Based on
Conceptual Spaces. The MIT Press, 2017.

▸ Hermans, Felienne, and Marlies Aldewereld. “Programming Is Writing Is
Programming.” Proceedings of the International Conference on the Art,
Science, and Engineering of Programming - Programming '17, 2017,
doi:10.1145/3079368.3079413.

REFERENCES

▸ Kent, William, and Steve Hoberman. Data and Reality: a Timeless Perspective
on Perceiving and Managing Information in Our Imprecise World. Technics
Publications, 2012.

▸ Lewis, James, and Martin Fowler. “Microservices.” Martinfowler.com, 25 Mar.
2014, martinfowler.com/articles/microservices.html.

▸ Moore. “What a Programmer Does.” Datamation, Apr. 1967, pp. 177–178.,
archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/
k-9-pdf/k-9-u2769-1-Baker-What-Programmer-Does.pdf.

▸ Naur, Peter. “Programming as Theory Building.” Microprocessing and
Microprogramming, vol. 15, no. 5, 1985, pp. 253–261., doi:
10.1016/0165-6074(85)90032-8.

REFERENCES

▸ “Random Numbers.” The Art of Computer Programming, by Donald
Ervin Knuth, vol. 2, Addison-Wesley, 2011.

▸ Steele, Julie, and Noah P. N. Iliinsky. Beautiful Visualization. O'Reilly,
2010.

▸ Videla, Alvaro. “Metaphors We Compute By.” Communications of the
ACM, vol. 60, no. 10, 2017, pp. 42–45., doi:10.1145/3106625.

