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Search Relevance Challenges



Matching: vocab mismatch!

Taxonomical Semantical Magical Search Doug Turnbull, 
Lucene/Solr Revolution 2017

"Animal 
Control 
Law"

Dog catcher

Dog 
Catcher

Animal 
Control

Concept 
1234

Taxonomist / 
Librarian

Costly to manually 
maintain mapping 
between searcher & 
corpus vocabulary

No Match, despite relevant results!

legalese

lay-speak

https://www.youtube.com/watch?v=90F30PS-884


Animal Control Law

Herefore let it be …
And therefore… with 
much to be blah blah 
blah
…
…
The End
 

Ranking optimization hard!

Dog catcher

Score 
doc

Ranked 
Results

LTR is only as good as 
your features: Solr/ES 
queries based on your 
skill with Solr/ES queries

LTR?

Ranking can be hard 
optimization problem:
Fine tuning heuristics: 
TF*IDF, Solr/ES queries, 
analyzers, etc...



Embedding-Based Ranking



Embeddings

Word representations that ‘remember’ something 
about the context they tend appear in

“Cryptocurrency is hyped?”

“Have you heard the hype about bitcoin?”

Appear in similar 
contexts

I would like to cancel my reservation

I would like to confirm my reservation

Appear in similar 
contexts

Context: usually defined by the surrounding words



Embeddings are 
N-Dimensional Vectors
that remember context

“Cryptocurrency is hyped?”

“Have you heard the hype about bitcoin?”

Appear in similar 
contexts

I would like to cancel my reservation

I would like to confirm my reservation

Appear in similar 
contexts

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin

[-0.5,0.7] cancel
[-0.4,0.8] confirm

2D Vector:

Similar
Contexts

Graph from Desmos

https://www.desmos.com/calculator/hzdqsra8mw


Search is based on similar vector similarity

Bitcoin 
regulation 
guide. Bitcoin is 
a 
cryptocurrency. 
You’ll like 
bitcoin! 

bitcoin regulation

Bitcoin is 
fun. 
Gasoline is 
regulated ...

'bitcoin' - aboutness

‘regulation’ 
aboutness 

Doc 1

Doc 2

X
X

Doc 1

Doc 2

X
Query

Ranked on 
Query-Doc 
similarity

Doc 1

1.
Doc 2

Doc 2 is closest to 
‘about’ the query 
terms 

(Term ‘aboutness’ usually measured via TF*IDF based stats)



Documents also can be 
embeddings

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

Hypothesis: embedding-based 
similarity related to ‘aboutness’ 
in relevance 
(ie article is ‘about’ cryptocurrency even if it never says 
the term ‘cryptocurrency’)



Hypothesis doesn’t always hold…
(corpuses & search probs vary)

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

Hypothesis Fails: articles here might be similar 
in embedding space, but may not map to user 
notions of relevance



Context alone is not enough 
(sometimes)

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

We can adjust them using:
- Synsets
- Sentiment
- e.g. https://arxiv.org/abs/1805.07966



Low hanging fruit #1

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin

Synonyms

The probability distribution of words in the 
corpus can provide enough information to 
predict whether two words appear in similar 
contexts



Fundamentally there’s still a mismatch

"Animal 
Control 
Law"

Dog catcher

Legal expert creates 
content with 'legalese'

Average Citizen 
searches in 
lay-speak

Embeddings derived from corpus, not our 
searcher’s language



Ranking-based embeddings



Embetterings - Neural Networks 101

Can we build embeddings that are closer to our 
searcher’s notion of ‘relevance’? 

Maybe?

But to hack embeddings… we must first 
understand them



Dot Product 
(‘similarity’)

Sigmoid
(forces to 0..1 
‘probability’)

[5.5,
 8.1,
 ...

 0.6]

'Bitcoin' 
Embedding

[6.0,
 1.7,
 ...

 8.4]

'Energy' 
Embedding

5.5*6.0 + 
8.1*1.7 +
...
+ 0.6*8.4 = 
102.65 0...1

0.67

Out of 
context True 

context

Term Other Term In Same Context? Model Prediction

bitcoin energy 1 0.67

Trying to predict

The word2vec Model
Term 
embedding
Table 
(initialized w/ 
random vals)

Term 
embedding
Table 
(initialized w/ 
random vals)



Tweak… 

Term Other Term True Context? Prediction

bitcoin energy 1 0.67

bitcoin dongles 0 0.78

bitcoin relevance 0 0.56

bitcoin cables 0 0.34

To get into the weeds on the loss function & gradient descent for 
word2vec:Stanford CS224D Deep Learning for NLP Lecture Notes 
Chaubard, Mundra, Socher

Random 
unrelated 
terms

Terms 
sharing 
context

Tweak ‘bitcoin’ to get 
prediction closer to 1

Tweak ‘bitcoin’ to get 
prediction closer to 0

Goal:

Goal:

(showing negative sampling method)

https://cs224d.stanford.edu/lecture_notes/notes1.pdf


Maximize Me!

-

Maximize ‘True’ Contexts

Dot Product 
(‘similarity’)

Sigmoid
(forces to 

0..1)

[5.5,
 8.1,
 ...

 0.6]

[6.0,
 1.7,
 ...

 8.4]

Minimize ‘False’ Contexts

Just the model (sigmoid of dot product)Objective /
 ‘Loss’ Function / 
‘Cost’ Function

L  =



Did you just neural network?

Backpropagate tweaks to weights 
to reduce error

Neuron 
(sigmoid)

W
or

d1
W

or
d2

(Dot product implicit)

d L
d v[0]

d L
d v[1]

d L
d v[2]

...

Build a loss function

Pick weight to tweak 
up or down to 
minimize loss

More complex/'deep' neural nets, can 
propagate back error to earlier layers 
to learn weights



Dot Product 
(‘similarity’)

Sigmoid
(forces to 0..1)

[5.5,
 8.1,
 ...

 0.6]

'Bitcoin' 
Embedding

[6.0,
 1.7,
 ...

 8.4]

'Energy' 
Embedding

5.5*6.0*2.0 + 
8.1*1.7*0.5 +
...
+ 0.6*8.4*1.4 = 
102.65 0...1

0.67

Out of 
context True 

context

Doc2Vec, train paragraph vector w/ term vectors

[2.0,
 0.5,
 ...

 1.4]

Para. 
embedding
matrix

Term 
embedding
matrix

Term 
embedding
matrix

backpropagate



Same neg sampling can apply here

Term Para True Context? Prediction

bitcoin Doc 1234 
Para 1

1 0.67

bitcoin Doc 5678 
Para 5

0 0.78

bitcoin Doc 1234 
Para 8

0 0.56

bitcoin Doc 1537 
Para 1

0 0.34

I’m continuing the thread of negative sampling, but doc2vec need not 
use negative sampling

Random 
unrelated 
docs

Terms 
sharing 
context

Tweak embeddings to 
get prediction closer to 1

Tweak embeddings to 
get prediction closer to 0



Low hanging fruit #2

Similar word embeddings lie close to one 
another

Similar document embeddings lie close to 
one another

Document embeddings lie close to word 
embeddings representing important words 
or topics for them

Retrieval
Did anyone say 
terms???

Ranking
Did anyone say 
frequencies ???



Low hanging fruit #2

Corpus and search vocabularies can differ a 
lot

Combining traditional IR and neural models 
can help in filling the gaps 

Retrieval
Terms and vectors

Ranking
Frequencies and 
distances



Neural Search Hack1: Relevance-based embeddings?

Query
Term

Doc Relevant? Relevance 
Score

bitcoin Doc 1234 1 0.67

bitcoin Doc 5678 0 0.78

bitcoin Doc 1234 0 0.56

bitcoin Doc 1537 0 0.34

Random 
unrelated 
docs

Relevant 
doc for 
term

Tweak embeddings to 
get query-doc score 
closer to 1

Tweak embeddings to 
get prediction closer to 0

(derived from 
clicks, etc)

What about queries/docs we haven’t seen?



Pretrain word2vec with corpus/sessions?

Query 
Term

Doc Corpus 
Model

True 
Relevance

Tweaked
Score

bitcoin Doc 1234 0 1 0.01

bitcoin Doc 5678 1 0 0.99

bitcoin Doc 1234 0 0 0.56

bitcoin Doc 1537 0 0 0.34

Takes a lot to overcome 
original unified model, 
and its a case-by-case 
basis

(a kind of prior)

An online / evolutionary approach to converge on improved 
embeddings?



Geometrically adjust query embeddings

Averaging query vectors by means of some possibly relevant 
documents



LTR feature... See today's mobile.de talk where RankNet is 
highlighted if you want pure DL solution 
(not sure it's always best LTR model)...

[5.5,
 8.1,
 ...

 0.6]

[6.0,
 1.7,
 ...

 8.4]

[2.0,
 0.5,
 ...

 1.4]

Para. 
embedding
matrix

Term 
embedding
matrix

Term 
embedding
matrix

Score......LTR...



Neural Language Models 



Language Model

Given what’s been spoken thus far, predict the next word / character

“eat __?_____”

cat: 0.001
...
chair: 0.001
pizza: 0.02
...
nap: 0.001

Highest 
Probability

Obvious applications: autosuggest, etc



Markov language model 

pizza chair nap ...

eat 0.02 0.0002 0.0001 ...

cat 0.0001 0.0001 0.02 ...

... ... ... ...

Probability of ‘pizza’ following 
‘eat’ (as in “eat pizza”)

V words

V
 w

or
ds

From corpus we can build a transition matrix 
reflecting frequency of word transitions:



Markov model for embeddings?

[5.5,
 8.1,
 ...

 0.6]

Term 
embedding
matrix

‘eat’ 
embedding

‘h’ dim
ensions

1 2 3 ... h

0 0.2 -0.4 0.1

1 -0.1 0.3 -0.24

2

...

h

X

[0.5,
 6.1,
 ...

 -4.8]

Embedding 
of next word

=

(probably clusters near 
‘pizza’ etc)A transition matrix of sorts - weights 

learned through backpropagation



Accuracy requires context...

The race is on! dust!eat

Word => Next Word

pizza!

Context  +

(and new context)



Context +  new word => New Context/word‘Embedding’ markov model 
from earlier

Word => New Context & WordOld Context  +

[0.5,  1.6 …
 6.1, -4.8 …
  …          
] 

[ 1.6,
 -5.4
  …]

X
[5.5,
 8.1,
 ...

Eat (embedding)

=

Input
‘Transition’

[...] 

[-0.9,
 -1.2
  …]

X
[5.5,
 8.1,
 ...

= Input -> New 
Context
Transition

Pizza (embedding)

[0.5,  1.6 …
 6.1, -4.8 …
  …          
] 

X =

Prev Context -> New Context Transition
[ 0.3,
  4.5
  …]

[-0.6,
  3.3
  …]+

New 
Context

‘Embedding’ 
for next 
word

[...] 
Context -> 
Output 
Transition

[-1.6,
  7.3
  …]

X

=

Output 
Embedding

Next...



Simpler view

[5.5,
 9.1,
 ...

W_xh

[-5.5,
  1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

Unbearable Effectiveness of Recurrent Neural Networks

W_xh

[ 8.5,
 -1.1,
  ...

Predicted next word 
(or embedding)

Weights learned through 
backpropagation: 
(trained on true 
sentences in our corpus)

on eat

[-5.5,
  1.1,
 ...

[5.5,
 9.1,
 ...

is

dust

W_hy

W_xh

[-2.5,
  5.6,
 ...

[5.5,
 9.1,
 ...

race

W_xh

Psssst… this is a 
Recurrent Neural 
Network (RNN)!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


For search...

[5.5,
 9.1,
 ...

W_xh

[-5.5,
  1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

W_xh

[ 8.5,
 -1.1,
  ...

[-5.5,
  1.1,
 ...

[5.5,
 9.1,
 ...

W_hy

W_xh

Inject other contextually likely terms:
At any given point scanning our document, 
we can get a probability distribution of likely 
terms

A dog is loose! Please call the
animal control

dog catcher

phone

yodel

walk to



Not a silver bullet

[5.5,
 9.1,
 ...

W_xh

[-5.5,
  1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

W_xh

[ 8.5,
 -1.1,
  ...

[-5.5,
  1.1,
 ...

[5.5,
 9.1,
 ...

W_hy

W_xh

A dog is loose! Please call the
animal control

dog catcher

(corpus language)

(searcher language)

Won't learn this ideal 
language model if 
corpus never says 
'dog catcher'



One Vector Space To Rule Them 
All: Seq2Seq 



Sessions as documents

Embeddings 
built for just 
query terms

Dog catcher

Dog bit me

Lost dog

[5.5,
 8.1,
 ...

 0.6]
word2vec/doc2vec



Can we translate between searcher & corpus?

[5.5,
 8.1,
 ...

 0.6]

[2.0,
 0.5,
 ...

 1.4]

Insert Machine 
Learning Here Ranking 

Prediction

Doc 

Search term 

(classic LTR could go here)



Translation: RNN decoder/encoder

[-1.5,
  3.1,
 ...

W_xh

on

[-5.5,
  1.1,
 ...

[5.5,
 9.1,
 ...

is

W_xh

[-2.5,
  5.6,
 ...

[1.5,
 9.5,
 ...

race

W_xh

W_hhW_hh

Encoder RNN

[-4.5,
  5.1,
 ...

[-4.5,
  5.1,
 ...

[4.5,
 3.1,
 ...

W_xh

ist

[-1.5,
  9.1,
 ...

[1.3,
 4.3,
 ...

rennen

W_xh

W_hhW_hh

[-4.7,
  5.1,
 ...

Decoder RNN

[2.8,
 7.3,
 ...

W_xh

<START>

W_hy

rennen

W_hy

ist
W_hy

en

Seq2Seq The Clown Car of Deep Learning

Backprop...

W_hh

https://medium.com/@devnag/seq2seq-the-clown-car-of-deep-learning-f88e1204dac3


'Translate' documents to queries?

Encoder RNN Decoder RNN

Animal Control Law

Herefore let it be …
And therefore… with 
much to be blah blah 
blah
…
…
The End
 

Predicted Queries

Doc Query Relevant?

Animal Control Law Dog catcher 1

Littering Law Dog Catcher 0

Using judgments/clicks as training data:



Can we use graded judgments?

Encoder RNN Decoder RNN

Animal Control Law

Herefore let it be …
And therefore… with 
much to be blah blah 
blah
…
…
The End
 

Predicted Queries

Doc Query Relevant?

Animal Control Law Dog catcher 4

Animal Leash Law Dog Catcher 2

Construct training data to 
reflect weighting



Skip-Thought Vectors (a kind of ‘sentence2vec’)

Encoder RNN

Decoder RNN
(sentence before)

Decoder RNN
(sentence after)

It’s fleece was white 
as snow

Becomes an embedding for the 
sentence encoding semantic 
meaning

Mary had a little lamb

And everywhere that 
mary went, that lamb 
was sure to go



Skip-Thought Vectors for queries? (‘doc2queryVec’)

Encoder RNN

Decoder RNN
(relevant query)

Decoder RNN
(relevant query)

Becomes an embedding mapping 
docs into the query’s semantic 
space

q=dog catcher

q=loose dog

Animal Control Law

Herefore let it be …
And therefore… with 
much to be blah blah 
blah
…
…
The End
 

Decoder RNN
(relevant query)

...

q=dog fight

My Thoughts on Skip Thoughts

https://medium.com/@sanyamagarwal/my-thoughts-on-skip-thoughts-a3e773605efa


Demo



The Frontier



Anything2vec

Deep learning is especially good at learning representations of :
- Images
- User History
- Songs
- Video
- Text

If everything can be ‘tokenized’ into some kind of token space for retrieval 
Everything can be ‘vectorized’ into some embedding space for retrieval / ranking



Solr/ES community needs to get better 
first-class vector support

Similarity API and vectors ?
long computeNorm(FieldInvertState state)

SimWeight  computeWeight(float boost, CollectionStatistics 
collectionStats, TermStatistics... termStats)

SimScorer simScorer(SimWeight weight, LeafReaderContext context)



Unsupervising the future

With supervised we can’t get much further than the quality of the data itself

Can we do better with unsupervised learning ?



It’s not magic, it’s math!
Join the Search Relevancy Slack Community

http://o19s.com/slack

(projects (Elastic LTR!), chat, conferences (Haystack!), book 
authors, and more…) 

http://o19s.com/slack

