
The Neural Search Frontier
How Deep Learning is poised to revolutionize the search relevance landscape

About us

Doug Turnbull / Author "Relevant Search"

Doug Turnbull, CTO - OpenSource Connections

(http://o19s.com)

Relevance raining July 10,11!

https://opensourceconnections.com/blog/2018/07/10/think-l

ike-relevance-training/

)

Tommaso Teofili

Computer Scientist, Adobe

ASF member

http://o19s.com
https://opensourceconnections.com/blog/2018/07/10/think-like-relevance-training/
https://opensourceconnections.com/blog/2018/07/10/think-like-relevance-training/

Search Relevance Challenges

Matching: vocab mismatch!

Taxonomical Semantical Magical Search Doug Turnbull,
Lucene/Solr Revolution 2017

"Animal
Control
Law"

Dog catcher

Dog
Catcher

Animal
Control

Concept
1234

Taxonomist /
Librarian

Costly to manually
maintain mapping
between searcher &
corpus vocabulary

No Match, despite relevant results!

legalese

lay-speak

https://www.youtube.com/watch?v=90F30PS-884

Animal Control Law

Herefore let it be …
And therefore… with
much to be blah blah
blah
…
…
The End

Ranking optimization hard!

Dog catcher

Score
doc

Ranked
Results

LTR is only as good as
your features: Solr/ES
queries based on your
skill with Solr/ES queries

LTR?

Ranking can be hard
optimization problem:
Fine tuning heuristics:
TF*IDF, Solr/ES queries,
analyzers, etc...

Embedding-Based Ranking

Embeddings

Word representations that ‘remember’ something
about the context they tend appear in

“Cryptocurrency is hyped?”

“Have you heard the hype about bitcoin?”

Appear in similar
contexts

I would like to cancel my reservation

I would like to confirm my reservation

Appear in similar
contexts

Context: usually defined by the surrounding words

Embeddings are
N-Dimensional Vectors
that remember context

“Cryptocurrency is hyped?”

“Have you heard the hype about bitcoin?”

Appear in similar
contexts

I would like to cancel my reservation

I would like to confirm my reservation

Appear in similar
contexts

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin

[-0.5,0.7] cancel
[-0.4,0.8] confirm

2D Vector:

Similar
Contexts

Graph from Desmos

https://www.desmos.com/calculator/hzdqsra8mw

Search is based on similar vector similarity

Bitcoin
regulation
guide. Bitcoin is
a
cryptocurrency.
You’ll like
bitcoin!

bitcoin regulation

Bitcoin is
fun.
Gasoline is
regulated ...

'bitcoin' - aboutness

‘regulation’
aboutness

Doc 1

Doc 2

X
X

Doc 1

Doc 2

X
Query

Ranked on
Query-Doc
similarity

Doc 1

1.
Doc 2

Doc 2 is closest to
‘about’ the query
terms

(Term ‘aboutness’ usually measured via TF*IDF based stats)

Documents also can be
embeddings

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

Hypothesis: embedding-based
similarity related to ‘aboutness’
in relevance
(ie article is ‘about’ cryptocurrency even if it never says
the term ‘cryptocurrency’)

Hypothesis doesn’t always hold…
(corpuses & search probs vary)

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

Hypothesis Fails: articles here might be similar
in embedding space, but may not map to user
notions of relevance

Context alone is not enough
(sometimes)

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

2D Vector:

We can adjust them using:
- Synsets
- Sentiment
- e.g. https://arxiv.org/abs/1805.07966

Low hanging fruit #1

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin

Synonyms

The probability distribution of words in the
corpus can provide enough information to
predict whether two words appear in similar
contexts

Fundamentally there’s still a mismatch

"Animal
Control
Law"

Dog catcher

Legal expert creates
content with 'legalese'

Average Citizen
searches in
lay-speak

Embeddings derived from corpus, not our
searcher’s language

Ranking-based embeddings

Embetterings - Neural Networks 101

Can we build embeddings that are closer to our
searcher’s notion of ‘relevance’?

Maybe?

But to hack embeddings… we must first
understand them

Dot Product
(‘similarity’)

Sigmoid
(forces to 0..1
‘probability’)

[5.5,
 8.1,
 ...

 0.6]

'Bitcoin'
Embedding

[6.0,
 1.7,
 ...

 8.4]

'Energy'
Embedding

5.5*6.0 +
8.1*1.7 +
...
+ 0.6*8.4 =
102.65 0...1

0.67

Out of
context True

context

Term Other Term In Same Context? Model Prediction

bitcoin energy 1 0.67

Trying to predict

The word2vec Model
Term
embedding
Table
(initialized w/
random vals)

Term
embedding
Table
(initialized w/
random vals)

Tweak…

Term Other Term True Context? Prediction

bitcoin energy 1 0.67

bitcoin dongles 0 0.78

bitcoin relevance 0 0.56

bitcoin cables 0 0.34

To get into the weeds on the loss function & gradient descent for
word2vec:Stanford CS224D Deep Learning for NLP Lecture Notes
Chaubard, Mundra, Socher

Random
unrelated
terms

Terms
sharing
context

Tweak ‘bitcoin’ to get
prediction closer to 1

Tweak ‘bitcoin’ to get
prediction closer to 0

Goal:

Goal:

(showing negative sampling method)

https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Maximize Me!

-

Maximize ‘True’ Contexts

Dot Product
(‘similarity’)

Sigmoid
(forces to

0..1)

[5.5,
 8.1,
 ...

 0.6]

[6.0,
 1.7,
 ...

 8.4]

Minimize ‘False’ Contexts

Just the model (sigmoid of dot product)Objective /
 ‘Loss’ Function /
‘Cost’ Function

L =

Did you just neural network?

Backpropagate tweaks to weights
to reduce error

Neuron
(sigmoid)

W
or

d1
W

or
d2

(Dot product implicit)

d L
d v[0]

d L
d v[1]

d L
d v[2]

...

Build a loss function

Pick weight to tweak
up or down to
minimize loss

More complex/'deep' neural nets, can
propagate back error to earlier layers
to learn weights

Dot Product
(‘similarity’)

Sigmoid
(forces to 0..1)

[5.5,
 8.1,
 ...

 0.6]

'Bitcoin'
Embedding

[6.0,
 1.7,
 ...

 8.4]

'Energy'
Embedding

5.5*6.0*2.0 +
8.1*1.7*0.5 +
...
+ 0.6*8.4*1.4 =
102.65 0...1

0.67

Out of
context True

context

Doc2Vec, train paragraph vector w/ term vectors

[2.0,
 0.5,
 ...

 1.4]

Para.
embedding
matrix

Term
embedding
matrix

Term
embedding
matrix

backpropagate

Same neg sampling can apply here

Term Para True Context? Prediction

bitcoin Doc 1234
Para 1

1 0.67

bitcoin Doc 5678
Para 5

0 0.78

bitcoin Doc 1234
Para 8

0 0.56

bitcoin Doc 1537
Para 1

0 0.34

I’m continuing the thread of negative sampling, but doc2vec need not
use negative sampling

Random
unrelated
docs

Terms
sharing
context

Tweak embeddings to
get prediction closer to 1

Tweak embeddings to
get prediction closer to 0

Low hanging fruit #2

Similar word embeddings lie close to one
another

Similar document embeddings lie close to
one another

Document embeddings lie close to word
embeddings representing important words
or topics for them

Retrieval
Did anyone say
terms???

Ranking
Did anyone say
frequencies ???

Low hanging fruit #2

Corpus and search vocabularies can differ a
lot

Combining traditional IR and neural models
can help in filling the gaps

Retrieval
Terms and vectors

Ranking
Frequencies and
distances

Neural Search Hack1: Relevance-based embeddings?

Query
Term

Doc Relevant? Relevance
Score

bitcoin Doc 1234 1 0.67

bitcoin Doc 5678 0 0.78

bitcoin Doc 1234 0 0.56

bitcoin Doc 1537 0 0.34

Random
unrelated
docs

Relevant
doc for
term

Tweak embeddings to
get query-doc score
closer to 1

Tweak embeddings to
get prediction closer to 0

(derived from
clicks, etc)

What about queries/docs we haven’t seen?

Pretrain word2vec with corpus/sessions?

Query
Term

Doc Corpus
Model

True
Relevance

Tweaked
Score

bitcoin Doc 1234 0 1 0.01

bitcoin Doc 5678 1 0 0.99

bitcoin Doc 1234 0 0 0.56

bitcoin Doc 1537 0 0 0.34

Takes a lot to overcome
original unified model,
and its a case-by-case
basis

(a kind of prior)

An online / evolutionary approach to converge on improved
embeddings?

Geometrically adjust query embeddings

Averaging query vectors by means of some possibly relevant
documents

LTR feature... See today's mobile.de talk where RankNet is
highlighted if you want pure DL solution
(not sure it's always best LTR model)...

[5.5,
 8.1,
 ...

 0.6]

[6.0,
 1.7,
 ...

 8.4]

[2.0,
 0.5,
 ...

 1.4]

Para.
embedding
matrix

Term
embedding
matrix

Term
embedding
matrix

Score......LTR...

Neural Language Models

Language Model

Given what’s been spoken thus far, predict the next word / character

“eat __?_____”

cat: 0.001
...
chair: 0.001
pizza: 0.02
...
nap: 0.001

Highest
Probability

Obvious applications: autosuggest, etc

Markov language model

pizza chair nap ...

eat 0.02 0.0002 0.0001 ...

cat 0.0001 0.0001 0.02 ...

...

Probability of ‘pizza’ following
‘eat’ (as in “eat pizza”)

V words

V
 w

or
ds

From corpus we can build a transition matrix
reflecting frequency of word transitions:

Markov model for embeddings?

[5.5,
 8.1,
 ...

 0.6]

Term
embedding
matrix

‘eat’
embedding

‘h’ dim
ensions

1 2 3 ... h

0 0.2 -0.4 0.1

1 -0.1 0.3 -0.24

2

...

h

X

[0.5,
 6.1,
 ...

 -4.8]

Embedding
of next word

=

(probably clusters near
‘pizza’ etc)A transition matrix of sorts - weights

learned through backpropagation

Accuracy requires context...

The race is on! dust!eat

Word => Next Word

pizza!

Context +

(and new context)

Context + new word => New Context/word‘Embedding’ markov model
from earlier

Word => New Context & WordOld Context +

[0.5, 1.6 …
 6.1, -4.8 …
 …
]

[1.6,
 -5.4
 …]

X
[5.5,
 8.1,
 ...

Eat (embedding)

=

Input
‘Transition’

[...]

[-0.9,
 -1.2
 …]

X
[5.5,
 8.1,
 ...

= Input -> New
Context
Transition

Pizza (embedding)

[0.5, 1.6 …
 6.1, -4.8 …
 …
]

X =

Prev Context -> New Context Transition
[0.3,
 4.5
 …]

[-0.6,
 3.3
 …]+

New
Context

‘Embedding’
for next
word

[...]
Context ->
Output
Transition

[-1.6,
 7.3
 …]

X

=

Output
Embedding

Next...

Simpler view

[5.5,
 9.1,
 ...

W_xh

[-5.5,
 1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

Unbearable Effectiveness of Recurrent Neural Networks

W_xh

[8.5,
 -1.1,
 ...

Predicted next word
(or embedding)

Weights learned through
backpropagation:
(trained on true
sentences in our corpus)

on eat

[-5.5,
 1.1,
 ...

[5.5,
 9.1,
 ...

is

dust

W_hy

W_xh

[-2.5,
 5.6,
 ...

[5.5,
 9.1,
 ...

race

W_xh

Psssst… this is a
Recurrent Neural
Network (RNN)!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

For search...

[5.5,
 9.1,
 ...

W_xh

[-5.5,
 1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

W_xh

[8.5,
 -1.1,
 ...

[-5.5,
 1.1,
 ...

[5.5,
 9.1,
 ...

W_hy

W_xh

Inject other contextually likely terms:
At any given point scanning our document,
we can get a probability distribution of likely
terms

A dog is loose! Please call the
animal control

dog catcher

phone

yodel

walk to

Not a silver bullet

[5.5,
 9.1,
 ...

W_xh

[-5.5,
 1.1,
 ... W_hh

[5.0,
 4.1,
 ...

[1.5,
 0.1,
 ...

W_xh

[8.5,
 -1.1,
 ...

[-5.5,
 1.1,
 ...

[5.5,
 9.1,
 ...

W_hy

W_xh

A dog is loose! Please call the
animal control

dog catcher

(corpus language)

(searcher language)

Won't learn this ideal
language model if
corpus never says
'dog catcher'

One Vector Space To Rule Them
All: Seq2Seq

Sessions as documents

Embeddings
built for just
query terms

Dog catcher

Dog bit me

Lost dog

[5.5,
 8.1,
 ...

 0.6]
word2vec/doc2vec

Can we translate between searcher & corpus?

[5.5,
 8.1,
 ...

 0.6]

[2.0,
 0.5,
 ...

 1.4]

Insert Machine
Learning Here Ranking

Prediction

Doc

Search term

(classic LTR could go here)

Translation: RNN decoder/encoder

[-1.5,
 3.1,
 ...

W_xh

on

[-5.5,
 1.1,
 ...

[5.5,
 9.1,
 ...

is

W_xh

[-2.5,
 5.6,
 ...

[1.5,
 9.5,
 ...

race

W_xh

W_hhW_hh

Encoder RNN

[-4.5,
 5.1,
 ...

[-4.5,
 5.1,
 ...

[4.5,
 3.1,
 ...

W_xh

ist

[-1.5,
 9.1,
 ...

[1.3,
 4.3,
 ...

rennen

W_xh

W_hhW_hh

[-4.7,
 5.1,
 ...

Decoder RNN

[2.8,
 7.3,
 ...

W_xh

<START>

W_hy

rennen

W_hy

ist
W_hy

en

Seq2Seq The Clown Car of Deep Learning

Backprop...

W_hh

https://medium.com/@devnag/seq2seq-the-clown-car-of-deep-learning-f88e1204dac3

'Translate' documents to queries?

Encoder RNN Decoder RNN

Animal Control Law

Herefore let it be …
And therefore… with
much to be blah blah
blah
…
…
The End

Predicted Queries

Doc Query Relevant?

Animal Control Law Dog catcher 1

Littering Law Dog Catcher 0

Using judgments/clicks as training data:

Can we use graded judgments?

Encoder RNN Decoder RNN

Animal Control Law

Herefore let it be …
And therefore… with
much to be blah blah
blah
…
…
The End

Predicted Queries

Doc Query Relevant?

Animal Control Law Dog catcher 4

Animal Leash Law Dog Catcher 2

Construct training data to
reflect weighting

Skip-Thought Vectors (a kind of ‘sentence2vec’)

Encoder RNN

Decoder RNN
(sentence before)

Decoder RNN
(sentence after)

It’s fleece was white
as snow

Becomes an embedding for the
sentence encoding semantic
meaning

Mary had a little lamb

And everywhere that
mary went, that lamb
was sure to go

Skip-Thought Vectors for queries? (‘doc2queryVec’)

Encoder RNN

Decoder RNN
(relevant query)

Decoder RNN
(relevant query)

Becomes an embedding mapping
docs into the query’s semantic
space

q=dog catcher

q=loose dog

Animal Control Law

Herefore let it be …
And therefore… with
much to be blah blah
blah
…
…
The End

Decoder RNN
(relevant query)

...

q=dog fight

My Thoughts on Skip Thoughts

https://medium.com/@sanyamagarwal/my-thoughts-on-skip-thoughts-a3e773605efa

Demo

The Frontier

Anything2vec

Deep learning is especially good at learning representations of :
- Images
- User History
- Songs
- Video
- Text

If everything can be ‘tokenized’ into some kind of token space for retrieval
Everything can be ‘vectorized’ into some embedding space for retrieval / ranking

Solr/ES community needs to get better
first-class vector support

Similarity API and vectors ?
long computeNorm(FieldInvertState state)

SimWeight computeWeight(float boost, CollectionStatistics
collectionStats, TermStatistics... termStats)

SimScorer simScorer(SimWeight weight, LeafReaderContext context)

Unsupervising the future

With supervised we can’t get much further than the quality of the data itself

Can we do better with unsupervised learning ?

It’s not magic, it’s math!
Join the Search Relevancy Slack Community

http://o19s.com/slack

(projects (Elastic LTR!), chat, conferences (Haystack!), book
authors, and more…)

http://o19s.com/slack

