The Neural Search Frontier

How Deep Learning is poised to revolutionize the search relevance landscape

About us

Doug Turnbull, CTO - OpenSource Connections (<u>http://o19s.com</u>)

Relevance raining July 10,11!Computehttps://opensourceconnections.com/blog/2018/07/10/think-IASF mediateike-relevance-training/ASF mediate

Tommaso Teofili

Computer Scientist, Adobe ASF member

Search Relevance Challenges

Taxonomical Semantical Magical Search Doug Turnbull, Lucene/Solr Revolution 2017

Ranking optimization hard!

Embedding-Based Ranking

Word representations that 'remember' something about the <u>context</u> they tend appear in

Context: usually defined by the surrounding words

"Have you heard the hype about bitcoin?"

I would like to <u>cancel</u> my reservation

Embeddings are N-Dimensional Vectors that remember context

<u>2D Vector:</u> [0.5,-0.5] cryptocurrency [0.6,-0.4] bitcoin

[-0.5,0.7] cancel [-0.4,0.8] confirm

Search is based on similar vector similarity

(Term 'aboutness' usually measured via TF*IDF based stats)

Documents also can be embeddings

2D Vector:

[0.5,-0.5] cryptocurrency [0.6,-0.4] bitcoin [0.5,-0.4] article on bitcoin

<u>Hypothesis Fails</u>: articles here might be similar in embedding space, but may not map to user notions of relevance

Context alone is not enough (sometimes)

2D Vector:

[0.5,-0.5] cryptocurrency
[0.6,-0.4] bitcoin
[0.5,-0.4] article on bitcoin

We can adjust them using:

- Synsets
- Sentiment
- e.g. https://arxiv.org/abs/1805.07966

Low hanging fruit #1

The probability distribution of words in the corpus can provide enough information to predict whether two words appear in similar contexts

<u>Synonyms</u>

[0.5,-0.5] cryptocurrency [0.6,-0.4] bitcoin

Fundamentally there's still a mismatch

Ranking-based embeddings

Embetterings - Neural Networks 101

Can we build embeddings that are closer to our <u>searcher's</u> notion of 'relevance'?

Maybe?

But to hack embeddings... we must first understand them

The word2vec Model

To get into the weeds on the loss function & gradient descent for word2vec:Stanford <u>CS224D Deep Learning for NLP Lecture Notes</u> Chaubard, Mundra, Socher

Tweak...

(showing negative sampling method)

Maximize Me!

Did you just neural network?

More complex/'deep' neural nets, can **propagate** back error to earlier layers to learn weights

Doc2Vec, train paragraph vector w/ term vectors

Same neg sampling can apply here

Low hanging fruit #2

Similar word embeddings lie close to one another

Similar document embeddings lie close to one another

Document embeddings lie close to word embeddings representing important words or topics for them <u>Retrieval</u> Did anyone say **terms**???

Ranking Did anyone say **frequencies** ???

Low hanging fruit #2

Corpus and search vocabularies can differ a lot

Combining traditional IR and neural models can help in filling the gaps

<u>Retrieval</u> Terms and vectors

<u>Ranking</u> Frequencies and distances

Neural Search Hack1: Relevance-based embeddings?

Pretrain word2vec with corpus/sessions?

_		(a	_			
	Query Term	Doc	Corpus Model	True Relevance	Tweaked Score	Takes a lot to overcome
	bitcoin	Doc 1234	0	1	0.01	original unified model, and its a case-by-case
	bitcoin	Doc 5678	1	0	0.99 🖊	Dasis
	bitcoin	Doc 1234	0	0	0.56	
	bitcoin	Doc 1537	0	0	0.34	

An online / evolutionary approach to converge on improved embeddings?

Geometrically adjust query embeddings

Averaging query vectors by means of some possibly relevant OpenSource documents Adobe

Connections

LTR feature...

[5.5,

OpenSource

Connections

Neural Language Models

Language Model

Given what's been spoken thus far, predict the next word / character

Obvious applications: autosuggest, etc

Markov language model

From corpus we can build a **transition matrix** reflecting frequency of word transitions:

V words

V words

	pizza	chair	nap					
eat	0.02	0.0002	0.0001					
cat	0.0001	0.0001	0.02					
		\						
Probability of 'pizza' following 'eat' (as in "eat pizza")								

Markov model for embeddings?

A transition matrix of sorts - **weights** learned through backpropagation [0.5, 6.1, ... -4.8]

Embedding of next word

(probably clusters near 'pizza' etc)

Accuracy requires context...

The race is on! eat plustd! Context + Word => Next Word (and new context)

One Vector Space To Rule Them All: Seq2Seq

Sessions as documents

Embeddings built for just *query terms*

Can we *translate* between searcher & corpus?

Translation: RNN decoder/encoder

'Translate' documents to queries?

Herefore let it be ... And therefore... with much to be blah blah

blah

The End

Doc	Query	Relevant?	
Animal Control Law	Dog catcher	1	
Littering Law	Dog Catcher	0	

OpenSource Connections

Skip-Thought Vectors (a kind of 'sentence2vec')

Skip-Thought Vectors for queries? ('doc2queryVec')

The Frontier

Anything2vec

Deep learning is especially good at learning representations of :

- Images
- User History
- Songs
- Video
- Text

If everything can be 'tokenized' into some kind of token space for retrieval Everything can be 'vectorized' into some embedding space for retrieval / ranking

Solr/ES community needs to get better first-class vector support

Similarity API and vectors ?

long computeNorm(FieldInvertState state)

SimWeight computeWeight(float boost, CollectionStatistics collectionStats, TermStatistics... termStats)

SimScorer simScorer(SimWeight weight, LeafReaderContext context)

Unsupervising the future

With supervised we can't get much further than the quality of the data itself

Can we do better with unsupervised learning?

It's not magic, it's math!

Join the Search Relevancy Slack Community

http://o19s.com/slack

(projects (Elastic LTR!), chat, conferences (Haystack!), book authors, and more...)