Apache Lucene and Java 9+
Opportunities and Challenges
for Apache Solr and Elasticsearch

My Background

Committer and PMC member of Apache Lucene and Solr - main focus is on
development of Lucene Core.

Implemented fast numerical search and maintaining the new attribute-based text
analysis API. Well known as Generics and Sophisticated Backwards Compatibility
G-

Elasticsearch lover.

Working as consultant and software architect at SD DataSolutions GmbH in
Bremen, Germany.

Maintaining PANGAEA (Data Publisher for Earth & Environmental Science) where |

implemented the portal's geo-spatial retrieval functions with Apache Lucene Core
and Elasticsearch.

What iIs this talk about?

* History of Java 9 and Apache Lucene/Solr
* Migration and testing your with Java 9’s
module system (Jigsaw)

« Common pitfalls with Java 7 / Java 8 code,
that just used to work

Performance?

__@c'oto I0NS

Oracle & Apache Lucene

History

ﬂ!otosolutl_ogs N, -

Remember 20117

Chronology:
Friday, July 29, 2011

T - Lo - N

~— ———— — e .

X Java 7 paralyses Lucene and = ‘4}-_, . . .
€« C | @ www.h-online.com/open/news/item/Java-7-paralyses-Lucen %¢
r A

open source JEERTLY In association with

m

Last 7 days Mews Archive Features Forums MNewsletter RSS

29 July 2011, 12:58 « previous | next »

Java 7 paralyses Lucene and Solr

The hotspot compiler in the recently released Java 7 has a u
defective optimiser that can cause flawed loops. according to a — &
warning published by the Apache Software Foundation. As a = n

result, the Java Virtual Machine can crash, and calculations can
produce incorrect results.

A number of Apache projects are affected, including every published version of

Lucene and Solr. The Apache developers say that the indexing of documents on

Solr causes Java to crash. Loops in Lucene can also be incorrectly compiled,

thereby corrupting the indexes. In particular, the trunk version of Lucene with the , ,

pulsing codec is affected.

The bugs were discovered only five days before Java 7 was published:. Oracle
says it will correct them in the second service release of Java 7 at the latest; the
first update to Java 7 was reserved solely for security fixes, but the issue may
prompt Oracle to change that plan. Until then though, users of Lucene and Solr
should refrain from using the new version of Java or at least use the JVM option
-¥¥:-UseLoopPredicate {0 disable the optimisation and prevent the index from
being damaged.

The Apache developers say that users of Java 6 could also be affected.
However, the flaws only occur in Java & when the JVM is used with the options -
HX:+OptimizeStringConcas Of -XX:+AggressiveOprs Which activate normally
disabled Hotspot optimisations.

Oracle has registered the flaws under 7070134, 7044738 and 7068051. The
first one causes JVM to crash when Martin Porter's stemmer algorithm is used,
which traces English words back to their stems. This flaw currently is of "low
priority" while the others are "medium".

(djwm) / L
| . | /A 7 a

) LI_M‘:'EI LI_IQ‘:'EI
."’; Java7 lyses Lucene anc o i
ava 7 para o | -
E paraly) . {1 Java7 Could Cause Bugs in ‘E S -

€« C | @ www.h-online.com/open/news/item/Java-7-paralyses-Lucen %¢ . : ~ ;
L c ® Jaxenter.com/apache-warn-java-7-causes-bugs-in-some-apache-pr ﬂi’ X

-~

jaXxenter :

Last 7 days Mews Archive Features Forums MNewsletter RSS 5

NEWS VIDEOS BOOKS EVENTS JAVA TECH JOURNAL

29 July 2011, 12:58 « previous | next »

HOME NEWS

Java 7 paralyses Lucene and Solr

The hotspot compiler in the recently released Java 7 has a Find out what's new in |Boss AS7 and OpenShift, in the new issue of Java |
defective optimiser that can cause flawed loops, according to a Tech Journal! 1
warning published by the Apache Software Foundation. As a

result, the Java Virtual Machine can crash, and calculations can July 29, 2011 RELATED MNEWS BOOKS | VIDEOS | EVENTS

produce incorrect results.

A number of Apache projects are affected, including every published version of
Lucene and Solr. The Apache developers say that the indexing of documents on l I

Apache Code Affected by Java 7

Java 7 Could Cause Bugs in Some Apache Projects
Solr causes Java to crash. Loops in Lucene can also be incorrectly compiled,
thereby corrupting the indexes. In particular, the trunk version of Lucene with the
pulsing codec is affected.

4 | ¥ Tweet 5 +1 0 mShare 2 |[DiComment | Email || +5% Share

The bugs were discovered only five days before Java 7 was published:. Oracle
says it will correct them in the second service release of Java 7 at the latest; the
first update to Java 7 was reserved solely for security fixes, but the issue may
prompt Oracle to change that plan. Until then though, users of Lucene and Solr

should refrain from using the new version of Java or at least use the JVM option _ _ _ N . .
XX —UseLoapPredicate 10 disable the optimisation and prevent the index from results, ultimately leading to bugs in applications. Currently, it is known that all versions of

Uwe Schindler has posted that the just-released Java 7 contains hotspot compiler
optimisations, which miscompile some loops, and this can affect the code of “several”
Apache projects. This can potentially lead to [WM crashes, or the incorrect calculation of

being damaged. Lucene Core and Solr released today, are affected by these bugs. Java 6 users are also
(|affected, if they use one of the JVM options that are not enabled by default:
The Apache developers say that users of Java 6 could also be affected.

However, the flaws only occur in Java 6 when the JVM is used with the options -) o .
XX:+0ptimizeStringConcas OF ~XX:+Aggressiveopts Which activate normally -XX:+OptimizeStringConcat or

disabled Hotspot optimisations. -XX: +AggressiveOpts

Oracle has registered the flaws under 7070134, 7044738 and 7068051. The
first one causes JVM to crash when Martin Porter's stemmer algorithm is used,

which traces English words back to their stems. This flaw currently is of "low
priority” while the others are "medium". Oracle had no time to fix those bugs,” states the announcement. "It is strongly

"These problems were detected only 5 days before the official Java 7 release, so

recommended not to use any hotspot optimization switches in any Java version
(djwm) Ir without extensive testing!”

%

/ E Java7 paral

c

€«

JavaTy

The hotspo
defective o
warning pu%
result, the J
produce inc|

A nurnberﬂ
Lucene an

Solr causes|
thereby cor
pulsing cod

The bugs wi
says it will ¢
first update
prompt Ora
should refrg
-¥¥:-UselLoq
being dama|

The Apachsg
However, th
- +Optimidg
disabled Ho|

Oracle has
first one ca
which trace:
priority" whi

(dwm)

— -

@ Oracle releases 'buggy' Jav ! Eh

mﬁlg

|

&«

Reviews

cnet__ News

Apple

Home = Mews > Business Tech

Business Tech

C | @ news.cnet.com/8301-1001_3-20085536-

Downloads Video How To

sreen Tech

Ad Infowr

©

@ jaxenter.com/apache-warn-java-7-causes-bugs-in-some-apache-pr vy | &

xenter

MIDEOS

uld Cause Bugs in

-~

BOOKS EVENTS JAVA TECH JOURNAL

EDITORS PICK

ECLIPSE ANDROID

ARCHITECTURE CLOUD

it what's new in JBoss AS7 and OpenShift, in the new issue of Java
urnal!

m

RELATED | NEWS | BOOKS | VIDEOS = EVENTS

Bis 12% und mehr
e Endlich auch fir

Privatanleger:
Teakholzinvestment ab

Selbstindig? Unter 55?7

Private Krankenkasse ab
nur 57 - Euro fir
Selbstdndige und

Gabelst

3.900€ bis zu 12% p.a. Freiberufler unter 55

le Affected by Java 7 |
Could Cause Bugs in Some Apache Projects

Oracle released its first full version of Java yesterday, but developers have reported bugs that can crash virtual
machines, corrupt data, and cause errors in applications.

Java Standard Edition 7 (SE7) is the first milestone since Oracle bought Java's creator, Sun, which at the time
prompted fears from some community members about the future of Java.

The release includes improved support for dynamic languages, multicore-compatible APls, and additional
networking and security features. Oracle said in a statement itis the culmination of “industry-wide development
involving open review, weekly builds and extensive collaboration between Oracle engineers and members of the

und mehr steuerfrei Jahren! b || 3 Tweet 5 T1 0 ﬁ Share |- 2 | [3ICommant Email |[<5% Share B |
i
FILED UNDER: BUSINESS TECH r has posted that the just-released Java 7 contains hotspot compiler
oraCIe releases 'buggy' Java SE? k., which miscompile some loops, and this can affect the code of "several” I
Ny iects. This can potentially lead to JWM crashes, or the incorrect calculation of
ﬁj;ie:glj‘:;:f“D:ESAM POT O print [E-mail ately leading to bugs in applications. Currently, it is known that all versions of |
' and Solr released today, are affected by these bugs. Java 6 users are also |
Bl Recommend 33 »Tweet | 84 Tj g % Share = 7 comments ey use one of the JVM options that are not enabled by default:

zeStringConcat or
siveOpts

These problems were detected only 5 days before the official Java 7 release, so M
Ioracle had no time to fix those bugs,” states the announcement. "It is strongly
recommended not to use any hotspot optimization switches in any Java version
without extensive testing!”

- g — DE&] T — I s

/ Ed JavaT paralf” - . [_.: E Apache and Oracle warn of \.\ T —
Oracle releases 'buggy' Jav \'T\ - - - .
e ; — — = | &« @ www.infoworld.com/t/java-programming/apache-and-or ki
€« C © news.cnet.com/8301-1001_3-20085536-92/oracle-releases-buggy-j |
-
Reviews N Downloads I I Owo Id
! Last 7 days Cnet NEWS
z Apple T Sign in s
| CHANNELS Application Development Applications Cloud Computing Data Center
Home = Mews > Business Tech
JavaTp
. e Test Center Technologies Tech Watch White P
The hotspo] BUSII"IESS TECh
defective o
warning pua
resuft, the J # InfoWorld Home [InfoWWorld Tech Watch / Apache and Oracle warn of serious Java 7 compiler
produce inc . ad Infow v v v P piler...
Bis 12% und mehr Selbstindig? Unter 55?7
A number o| Sl ¥ Endlich auch fir Private Krankenkasse ab ire Ty, 518 o
Lucene and Privatanleger: nur 57,- Euro fir T}I'f:‘ F” st T\""“Id on TC{—E]
Solr causes| Teakholzinvestment ab * Selbstdndige und
thereby cor 3.900€ bis zu 12% p.a. Freiberufler unter 55 I N F 0 W 0 R L D T E c H WAT c H
; und mehr steuerfrei Jahren! |
pulsing cod L
NJuLy 29, 2011
The bugs w . .
says il lfff FILED UNDER: BUSINESS TECH Apache and Oracle warn of serious Java 7
stupdateli - Qracle releases 'bu ' Java SE7 .
promp Ora gy compiler bugs »
should refrg By: Ben Woods |
D’:I‘ng”ca;a JULY 29,2011 10:25 AM POT = Pint B3 The newly released Java upgrade suffers hotspot-compiler
—_— problems that affect Lucene and Solr
The Apachd B Recommend 33 B Tweet | 84 +1 |/ 9 }, Share E 7 comments
However. th By Ted Samson | InfoWorld D Follow @tsamson_w ||
- +Optimidg
disabled Hol Oracle released its first full version of Java yesterday, but developers have reported bugs that can crash v — -
machines, corrupt data, and cause errors in applications. lIED Print (- 4 Comments :
Oracle has
first one ca Java Standard Edition 7 (SET7) is the first milestone since Oracle bought Java's creator, Sun, which att
‘g:g:t;'ri:r: prompted fears from some community members about the future of Java. It looks like a few bugs have crashed Oracle's
The release includes improved suppert for dynamic languages, multicore-compatible APls, and additiof |Java 7 release party that can wreak havoc on
(djwmy) netwarking and security features. Oracle said in a statement it is the culmination of “industry-wide develoApache Project applications. The news likely will
involving open review, weekly builds and extensive collaboration between Oracle engineers and membe .)
oo Aac 3 Aicannnintrant o fane AafF lawua sk aboo

."’; Java 7 paral - -
- c Lucid Imagination » Don't | Ntk —— S —— C— -_
€«
r C | @ www.lucidimagination.com/blog/2011/07/28/dont-use-java-7-for-anything/ woN
M -
‘ l u c I d PRODUCTS SUPPORT & SERVICES WHY LUCID? BLOG DEVZONE DOWNLOADS ABOUT US Fj
Last?days IMAGINATION Sign Up or Log In
29 July 2011 Home . Blog -
Java7p
ceecnenp] | Categores : ything "
getective o e Don’t Use Java 7, For Anything
result, the J ApacheCon Posted by hossman
produce inc Enpoks by ' Multivalued geolocation fields in Solr
BoostingTermQuery Java 7 GA was released today, but as noted by Uwe Schindler, there are some very , o
A number of Dmid-s i frightening bugs in HotSpot Loop optimizations that are enabled by default. In the MDWtDrIng Apache SDI_r and
'élélcre:;ig acommarce best case scenario, these bugs cause the JVM to crash. In the worst case scenario, LucidWorks with Zabbix
thereby cor Enterprise Search they cause incorrect execution of loops. ' Lucene in Barcelona, in Action
Isi d
dsina.co Events Bottom Line: Don't use Java 7 for anything (unless maybe you know you don't have ' SF Bay Lucene/Solr Meetup Attracts
The bugs FHundctlons any loops in your java code) 100 Attendees (and a spedial a 7
says it will ¢ adoap il
first update Libraries : P appearance by Doug Cutting?)
prompt Oras IO e indler ' - -
should refr tt:zgg; Connector Date: Thu, 28 Jul 2011 23:13:36 +0200 ;::ar}gﬁnclgjdgﬂmcg:ﬂf rkiﬁéu' the
:;‘n '”;;1“ Framework Subject: [WARNING] Index corruption and crashes in Apache Lucene Core / Apache Solr/Lu Eene pa g
9 Lucid Imagination Solr with Java 7 b
Lucid Imagination C i
The Apach Solutions g Hello Apache Lucene & Apache Solr users, Some more European Search in
However, th Action pmson_\WW
e 4opimi Hello users of other Java-based Apache projects,
LucidGaze ¢ i
disabled H LucidWorks Oracle released Java 7 today. Unfortunately it contains hotspot compiler It_ucene %DEE mem Enterprise Search :
Oracle has Lucy optimizations, which miscompile some loops. This can aifect code of several 0 search piatrorm
first one ca Mahout Apache projects. Sometimes JVMs only crash, but in several cases, results * SF Bay Area Lucene/Solr Meetup:
which trace: ManifoldCE calculated can be incorrect, leading to bugs in applications (see Hotspot 9/22 6:30PM (http://bit.ly/r19aZx)
priority” whi NoSOL bugs 7070134 [1], 7044738 [2], 7068051 [2]).
) ' Happy Anniversary, Lucene! 10
(djwm) nutch Apache Lucene Core and Apache Solr are two Apache projects, which are years at the ASF
Open Relevance affected by these bugs, namely alf versions released until today. Solr users

-

Reaction

Oracle (Rory O’Donnell) contacted Lucene PMC.
Weekly preview builds.

Other Open Source projects started to test with
preview builds of Java 8 —and later Java 9.

Easy and fast bug reporting!

ﬁ_datosolutm

A JDK 8: General Availabilii x

&

C 0 ‘ﬂ Sicher | https://mreinhold.org... }‘}(‘ 1 4 =% B

Over 400 of the more than 8,000 bug and enhancement issues ad-
dressed in JDK 8 were reported externally. These reports came in
throughout the release cycle, enabled by our regular posting of
weekly builds, but naturally the rate increased after we posted the De-
veloper Preview build in September. The following early testers who
submitted significant bug reports deserve special mention:

= Uwe Schindler, Apache Lucene (5 bugs)

= Robert Scholte, Apache Maven (4 bugs)

= Cedric Champeau, Groovy (3 bugs)

= Grzegorz Kossakowski, Scala (2 bugs)
Valuable reports continued to come in after we posted the first Re-
lease Candidate build in early February. Of the small number of bugs
fixed after that build, two were reported externally: A serious signa-

ture bug in the lambdafication of the Comparator API, and a nasty cor-
rectness bug in the implementation of default methods.

Launch! TI'll host the official Java 6 Launch Webcast at 17:00 UTC
next Tuesday, 25 March. Join me for an open question-and-answer ses-
sion with panel of key Java 8 architects, and to hear from a number of
other special guests, by signing up here.

o S

Java 9 and Apache Lucene

.@doto I0NS

What changed in Jigsaw? ‘
(module system) '

« Strong encapsulation:

— Code only sees classes from packages
exported to your code

— Private APIs are private — especially those In
the JDK!

 Your code behaves as If it will be executed
with a security manager! ©
__@c'oto oS >

)/

What else is wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes
#AwkwardStrongEncapsulation

« New since build 148 of Java 9

* Prevents reflective access to any class
from Java runtime

k@doto I0NS

What else is wrong with Jigsaw?

#AwkwardStrongEncapsulation: A non-public element of
an exported package can still be accessed via the
AccessibleObject: :setAccessible method of the
core reflection API. The only way to strongly encapsulate
such an element is to move it to a non-exported package.
This makes it awkward, at best, to encapsulate the internals
of a package that defines a public API.

from Java runtime

@do’to IoNs - , 7 ¥

What else is wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes
#AwkwardStrongEncapsulation

« New since build 148 of Java 9

* Prevents reflective access to any class
from Java runtime

k@doto I0NS

Unsafe, Byte Buffers & Co.

Undocumented APIs?

@c‘ato IONS -

The Generics Policeman Blog

My Homepage / Legal Notice Solutions GmbH Schindlers Software FANGAEA,

| @ Uwe Schindler

l G+ Fallaw 243

Use Lucene’s

| Work as committer
and PMC member for

Don’t be afraid — Some clarificatioh t

misunderstandings \pache Lucene ang
Solr and invented the numeric range

since version 3.1, Apache Lucene and Solr use MMapDirectory by default on 64bit Windows functionality for fast range queries

and Solans systems; since version 3.3 also for 64bit Linux systems. This change lead to some (NumericRangeQuery). Currently | @150

confusion ameong Lucene and Solr users, because suddenly their systems started to behave have the position of the project chair. |

differently than in previous versions. On the Lucene and Solr mailing lists a lot of posts arrived am also working in the PHP

from users asking why their Java installation is suddenly consuming three times their physical development crew, maintaining the web

server plug-in for Sun Java System Web
Servers (my favourite web server). My
(IT) interests are Lucene Java, XML
technigues, Data Warehousing, Sensor

memaory or system administrators complaining about heavy resource usage. Also consultants
were starting to tell people that they should not use MMap ~toxry and change their

solrconfig.xml to work instead with slow SimpleFSDirectory of HNIOFSDirectory (which

=

=

is much slower on Windows, caused by a JVM bug #6265734). From the point of view of the Networks, metadata dissemination using
Lucene committers, who carefully decided that using MMapDirectory is the best for those global standards, global unique
platforms, this is rather annoying, because they know, that Lucene/Solr can work with much identifiers like DOIs,... The recently

| W S . 1) NN SR N o U JSU U SR (g IR SR 1) MU R | R . 1 W S ——— FrrimnAoaAd "N Natacnalhnibiane b L™

The Generics Policeman Blog

My Homepage / Legal Notice Solutions GmbH Schindlers Software FANGAEA,

@ Uwe Schindler
Use Lucene’s

G Fallaw 243

| Work as committer
and PMC meamber for

Don’t be afraid — Some clarificatioh t

misunderstandings Apache Lucene and
Solr and invented the numeric range

since version 3.1, Apache Lucene and Solr use MMapDirectory by defaull on bdbit Windows functionality for fast range queries

and Solans systems; since version 3.3 also for 64bit Linux systems. This change lead to some (NumericRangeQueny). Currently | also

confusion among Lucene and Solr users, because suddenly their systems started to behave have the position of the project chair. |

differently than in previous versions. On the Lucene and Seolr mailing lists a lot of posts armved am also working in the PHF

from users asking why their Java installation is suddenly consuming three times their physical development crew, maintaining the web

server plug-in for Sun Java System Web
Servers (my favourite web server). My

https://issues.apache.org/jira/browse/LUCENE-6989 je Java, XML

housing, Sensor

https://bugs.openjdk.java.net/browse/JDK-4724038 Jreminaton using
Bl unigue

platforms, this is rather annoying, because they know, that Lucene/Solr can work with much identifiers like DOIs,... The recently

| W S . 1) NN SR N o U JSU U SR (g IR SR 1) MU R | R . 1 W S ——— FrrimnAoaAd "N Natacnalhnibiane b L™

memaory or system administrators complaining about heavy resource usage. Also consultants

https://issues.apache.org/jira/browse/LUCENE-6989
https://bugs.openjdk.java.net/browse/JDK-4724038

357 } catch (ReflectiveOperationException | RuntimeException e) {

358 // *** sun.misc.Cleaner unmapping (Java 8) ***

359 final Class<?> directBufferClass = Class.forName("java.nio.DirectByteBuffer");

360

361 final Method m = directBufferclass.getMethod("cleaner”);

362 m.setAccessible(true);

363 final MethodHandle directBufferCleanerMethod = lookup.unreflect(m);

364 final class<?> cleanerClass = directBuffercCleanerMethod.type().returnType();

365

366 /* "Compile"” a MH that basically is equivalent to the following code:

367 * void unmapper(ByteBuffer byteBuffer) {

368 * sun.misc.Cleaner cleaner = ((java.nio.DirectByteBuffer) byteBuffer).cleaner();

369 * if (Objects.nonNull(cleaner)) {

370 . cleaner.clean();

371 * } else {

372 . noop(cleaner); // the noop is needed because MethodHandles#guardWithTest always needs ELSE

373 * }

374 *)}

375 ! |

376 final MethodHandle cleanMethod = lookup.findvirtual(cleanerClass, “"clean", methodType(void.class));

377 final MethodHandle nonNullTest = lookup.findStatic(Objects.class, "“nonNull®”, methodType(boolean.class, Object.class))
378 .asType(methodType(boolean.class, cleanerClass));

379 final MethodHandle noop = dropArguments(constant(Void.class, null).asType(methodType(void.class)), @, cleanerClass);
380 final MethodHandle unmapper = filterReturnvalue(directBufferCleanerMethod, guardWwithTest(nonNullTest, cleanMethod, noop))
381 .asType(methodType(void.class, ByteBuffer.class));

382 return newBufferCleaner(directBufferClass, unmapper);

383 }

384 } catch (SecurityException se) {

} catch (ReflectiveOperationException | RuntimeException e) {
// *** sun.misc.Cleaner unmapping (Java 8) ***

final Class<?> directBufferClass = Class.forName("java.nio.DirectByteBuffer");

final Method m = directBufferclass.getMethod("cleaner");
m.setAccessible(true);

final MethodHandle directBufferCleanerMethod = lookup.unreflect(m);

final class<?> cleanerClass = directBuffercCleanerMethod.type().returnType();

/* "Compile"” a MH that basically is equivalent to the following code:
* void unmapper(ByteBuffer byteBuffer) {

sun.misc.Cleaner cleaner = ((java.nio.DirectByteBuffer) byteBuffer).cleaner();
* if (Objects.nonNull(cleaner)) {

cleaner.clean();

= } else {

* noop(cleaner); // the noop is needed because MethodHandles#guardWithTest always needs ELSE
*)

*}

*/

final MethodHandle cleanMethod = lookup.findvirtual(cleanercClass, “clean”, methodType(void.class));

final MethodHandle nonNullTest = lookup.findStatic(Objects.class, "“nonNull®”, methodType(boolean.class, Object.class))
.asType(methodType(boolean.class, cleanerClass));

final MethodHandle noop = dropArguments(constant(Void.class, null).asType(methodType(void.class)), @, cleanerClass);

final MethodHandle unmapper = filterReturnvalue(directBufferCleanerMethod, guardWwithTest(nonNullTest, cleanMethod, noop))
.asType(methodType(void.class, ByteBuffer.class));

return newBufferCleaner(directBufferClass, unmapper);

}

} catch (SecurityException se) {

357 } catch (ReflectiveOperationException | RuntimeException e) {

358 // *** sun.misc.Cleaner unmapping (Java 8) ***

359 final Class<?> directBufferClass = Class.forName("java.nio.DirectByteBuffer");

360

361 final Method m = directBufferclass.getMethod("cleaner”);

362 m.setAccessible(true);

363 final MethodHandle directBufferCleanerMethod = lookup.unreflect(m);

364 final class<?> cleanerClass = directBuffercCleanerMethod.type().returnType();

365

366 /* "Compile"” a MH that basically is equivalent to the following code:

367 * void unmapper(ByteBuffer byteBuffer) {

368 * sun.misc.Cleaner cleaner = ((java.nio.DirectByteBuffer) byteBuffer).cleaner();

369 * if (Objects.nonNull(cleaner)) {

370 . cleaner.clean();

371 * } else {

372 . noop(cleaner); // the noop is needed because MethodHandles#guardWithTest always needs ELSE

373 * }

374 *)}

375 ! |

376 final MethodHandle cleanMethod = lookup.findvirtual(cleanerClass, “"clean", methodType(void.class));

377 final MethodHandle nonNullTest = lookup.findStatic(Objects.class, "“nonNull®”, methodType(boolean.class, Object.class))
378 .asType(methodType(boolean.class, cleanerClass));

379 final MethodHandle noop = dropArguments(constant(Void.class, null).asType(methodType(void.class)), @, cleanerClass);
380 final MethodHandle unmapper = filterReturnvalue(directBufferCleanerMethod, guardWwithTest(nonNullTest, cleanMethod, noop))
381 .asType(methodType(void.class, ByteBuffer.class));

382 return newBufferCleaner(directBufferClass, unmapper);

383 }

384 } catch (SecurityException se) {

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

@SuppressForbidden(reason = "Needs access to private APIs in DirectBuffer, sun.misc.Cleaner, and sun.misc.Unsafe to enable hack")
private static Object unmapHackImpl() {
final Lookup lookup = lookup();

try {

try {
// *** sun.misc.Unsafe unmapping (Java 9+) ***

final Class<?> unsafeClass = Class.forName("sun.misc.Unsafe");
// first check if unsafe has the right method, otherwise we can give up
// without doing any security critical stuft:
final MethodHandle unmapper = lookup.findvirtual(unsafeClass, “invokeCleaner”,
methodType(void.class, ByteBuffer.class));
// fetch the unsafe instance and bind it to the wvirtual MH:
final Field f = unsafeClass.getDeclaredfField("theuUnsafe™);
f.setAccessible(true);
final Object theunsafe = f.get(null);
return newBufferCleaner(ByteBuffer.class, unmapper.bindTo(theUnsafe));
} catch (SecurityException se) {
// rethrow to report errors correctly (we need to catch it here, as we also catch RuntimeException below!):
throw se;
} catch (ReflectiveOperationException | RuntimeException e) {

// *** sun.misc.Cleaner unmapping (Java 8) ***

SOILE@ }—' -3 W/ . /‘_—-I R — JE—

@SuppressForbidden(reason = "Needs access to private APIs in DirectBuffer, sun.misc.Cleaner, and sun.misc.Unsafe to enable hack™)
private static Object unmapHackImpl() {
final Lookup lookup = lookup();
try {
try {

Unsafe got a new
method!?

} catch (SecurityException se) {

throw se;

} catch (ReflectiveOperationException | RuntimeException e) {

@c‘ato IONS - 7

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

@SuppressForbidden(reason = "Needs access to private APIs in DirectBuffer, sun.misc.Cleaner, and sun.misc.Unsafe to enable hack")
private static Object unmapHackImpl() {
final Lookup lookup = lookup();

try {

try {
// *** sun.misc.Unsafe unmapping (Java 9+) ***

final Class<?> unsafeClass = Class.forName("sun.misc.Unsafe");
// first check if unsafe has the right method, otherwise we can give up
// without doing any security critical stuft:
final MethodHandle unmapper = lookup.findvirtual(unsafeClass, “invokeCleaner”,
methodType(void.class, ByteBuffer.class));
// fetch the unsafe instance and bind it to the wvirtual MH:
final Field f = unsafeClass.getDeclaredfField("theuUnsafe™);
f.setAccessible(true);
final Object theunsafe = f.get(null);
return newBufferCleaner(ByteBuffer.class, unmapper.bindTo(theUnsafe));
} catch (SecurityException se) {
// rethrow to report errors correctly (we need to catch it here, as we also catch RuntimeException below!):
throw se;
} catch (ReflectiveOperationException | RuntimeException e) {

// *** sun.misc.Cleaner unmapping (Java 8) ***

SOILE@ }—' -3 W/ . /‘_—-I R — JE—

382
383
384
385
386
387
388
389
390
391

T N, M)

return newButterCleaner(directButrterClass, unmapper);
}
} catch (SecurityException se) {
return "Unmapping is not supported, because not all required permissions are given to the Lucene JAR file: " + se +
" [Please grant at least the following permissions: RuntimePermission(\"accessClassInPackage.sun.misc\") " +
" and ReflectPermission(\"suppressAccessChecks\")]";
} catch (ReflectiveOperationException | RuntimeException e) {

return “Unmapping is not supported on this platform, because internal Java APIs are not compatible with this Lucene version: " + e;

Compact Strings & Co.

Other Changes

@do’to IONS -

Compact Strings

Java 9 internally stores strings in compact form,
if they only contain ISO-8859-1 characters

Indyfied String Concat

"Hallo " + 123 + ' ' + object +

" 1s a concatted string";

e Javal.0tol.8:achainof StringBuilder.appends ()
* Java 9: Invokedynamic with StringConcatFactory:

String concat (String, int,char,Object, String)

fskmo I0NS

Just a funny detalil...

T AN

latasolution _

diff --git a/solr/core/src/java/org/apache/solr/util/SimplePostTool.java
b/solr/core/src/java/org/apache/solr/util/SimplePostTool.java

index 44a35ca..28e7231 108644 (file)

--- a/solr/core/src/java/org/apache/solr/util/SimplePostTool.java
+++ b/solr/core/src/java/org/apache/solr/util/SimplePostTool.java
@@ -16,7 +16,6 @@

*/

package org.apache.solr.util;

-import javax.xml.bind.DatatypeConverter;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.xpath.XPath;
@@ -45,6 +44,7 @@ import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;
import java.text.SimpleDateFormat;
import java.util.Arraylist;
+import java.util.Base64;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
@@ -852,7 +852,7 @@ public class SimplePostTool {
if(mockMode) return;
HttpURLConnection urlc = (HttpURLConnection) url.openConnection();
if (url.getUserInfo() != null) {
- String encoding = DatatypeConverter.printBase64Binary(url.getUserInfo().getBytes(StandardCharsets.US_ASCII));
+ String encoding = Base64.getEncoder().encodeToString(url.getUserInfo().getBytes(StandardCharsets.US_ASCII));
urlc.setRequestProperty("Authorization", "Basic " + encoding);
3
urlc.connect();
@@ -887,7 +887,7 @@ public class SimplePostTool {
urlc.setAllowUserInteraction(false);
urlc.setRequestProperty("Content-type", type):
if (url.getUserInfo() != null) {
= String encoding = DatatypeConverter.printBase64Binary(url.getUserInfo().getBytes(StandardCharsets.US_ASCII));
+ String encoding = Baseb4.getEncoder().encodeToString(url.getUserInfo().getBytes(StandardCharsets.US_ASCII));
urlc.setRequestProperty("Authorization”, "Basic " + encoding);
T
if (null != length) {

—— ~— — T — S o 2

Performance

Hotspot Changes

@c‘ato IONS

Intrinsics

java.util.Objects / java.util.Arrays
classes:

* Bounds checks
* Array comparisons (signed / unsigned)
* Array differences

_@ glatasolutions .

Know this type of code?

if (index < | | index >= length) throw new‘m

if (index <) throw new ..

if (index >= length) throw new ..

if (index >= () {
if (index < length) {
}

}

throw new ..

@da’to IONS - Y

K

if (index < O

if (index < O
if (index >=

if (index >=

if (index <

}

throw new

@doftasolwm

checklndex

public static int checkIndex(int index,
int length)

Checks if the index is within the bounds of the range from 0 (inclusive) to length (exclusive).
The index is defined to be out-of-bounds if any of the following inequalities is true:

« index < @
« index >= length
« length < 0, which is implied from the former inequalities

Parameters:

index - the index

length - the upper-bound (exclusive) of the range
Returns:

index if it is within bounds of the range

Throws:

IndexOutOfBoundsException - if the index is out-of-bounds

Since:

9

Solution: Multi-Release JAR (ep 235)

* Lucene adds plain Java implementations of
java.util.Objectsand java.util.Arrays toown

codebase (with exact same signatures)
e After compilation all class files are “patched” to use Java 9
signatures and stored in separate folder
* Builds MR-JAR with:
— unmodified Java 8-compatible classes
— Patched classes with Java 9 signatures in extra folder

__@c'oto I0NS

N

Solution: Mu

Lucene adds plain Jav
jJava.util.Objec
codebase (with exact
After compilation all c
signatures and stored
Builds MR-JAR with:
— unmodified Java 8
— Patched classes wi

v [Hlucene-core-8.0.0-SNAPSHOTzip " Name
v META-INF | LZA.class
services
v versions
v 9
v org
v apache
v lucene
analysis
v codecs
compressing
document
index
search
util
v org
v apache
v lucene
analysis
v codecs

blocktree

compressing

n—lﬂﬁ%—

v [Hlucene-core-8.0.0-SNAPSHOTzip " Name

v META-INF .
L | LZAclass
olution: Viu
[] .
hd versions
v 9
b ore
° L |3L7_4.java t':'l‘
uce 52 return hash(i, HASH LOG_HC);
\ 53 - }
j 55H private static int readInt(bytel[l buf, int i) {
return ((buf[i] &) <<) I ((buf[i+l] &) <<) | ((buf[i+2] &) << 1)

codq -
Py Afte 59 private static boolean readIntEquals (byte[] buf, int i, int j) {
return readInt(buf, i) == readInt(buf, j);

Signa

] private static int commonBytes(byte[] b, int ol, int o2, int limit) {

°] 64 assert ol <€ o02;
BUIIC 65 // never -1 because lengths always differ
66 return FutureArrays.mismatch(b, ol, limit, b, 02, limit);

-4 |
— Patched classes wi —

v codecs

blocktree

compressing

@C‘Cﬂ& IONS » s %—

v [Hlucene-core-8.0.0-SNAPSHOTzip " Name
v | META-INF

L | LZ4.dlass
olution: \Viu
[] .
hd versions
v 9
h'd ore
° L [l 174 java E:'I‘
uce 52 return hash(i, HASH LOG_HC);
\ 53 |}
j 55H private static int readInt(bytel[l buf, int i) {
return ((buf[i] &) <<) I ((buf[i+l] &) <<) | ((buf[i+Z] &) << 1)

codq -
Py Afte 5 private static boolean readIntEquals(byte[] buf, int i, int j) {
return readInt(buf, i) == readInt(buf, j);

Signa

] private static int commonBytes(byte[] b, int ol, int o2, int limit) {

°] 64 assert ol <€ o02;
BUIIC 65 // never -1 because lengths always differ
66 return EassseArrays.mismatch(b, ol, limit, b, 02, limit);

- 4 -
— Patched classes wi —

v codecs

blocktree

compressing

@C‘Cﬂ& IONS » s %—

Garbage Collector!

__@doto I0NS

New Default Garbage Collector

e G1GCis now the default
— Previously it was ParallelGC
— No need to care in most cases, as Solr /
Elasticsearch use a hardcoded default
* CMS collector deprecated!

— Warning on start of process!
— Migrate to G1GC?

k@doto I0NS

New Default Garbage Collector

$ java -XX:+UseConcMarkSweepGC
Java HotSpot (TM) 64-Bit Server VM

warning: Option UseConcMarkSweepGC was
deprecated 1n version 9.0 and will likely
be removed 1n a future release.

— Warning on start of process!
— Migrate to G1GC?

....@ glatasolutions /7 X

New Default Garbage Collector

e G1GCis now the default
— Previously it was ParallelGC
— No need to care in most cases, as Solr /
Elasticsearch use a hardcoded default
* CMS collector deprecated!

— Warning on start of process!
— Migrate to G1GC?

k@doto I0NS

Why update your cluster
toJava9or10?

__@c'oto I0NS

Sec"fity

More security also without SecurityManager:

No risk of bad plugins hacking Java internals!

__@c'oto I0NS

* Slightly improved performance for some

gueries!

* With Lucene/Solr 7.3+ (LUCENE-7966):

— Compression of large blobs during indexing
(Elasticsearch JSON “ source”

— Sorting against docvalues with
MMapDirectory

Performance

L@doto I0NS

The future

Support?

Java 11

* Release will be in September 2018
* Long Term Support (LTS) by Oracle
 Most people will use this version

— Java 9 and Java 10 are short-living

— Ubuntu 18.04 will use Java 10 as default, but

switch to Java 11 in September (including LTS
support)

L@doto I0NS

Java8/9/10/ 11

After September 2018, no more (Oracle) Java
9 or 10 releases

Java 8 has still LTS support till January 2019
(by Oracle)

Ubuntu has LTS support for Java 8 and 10/11
Redhat may package tar.gz files of Oracle 7,
8,9, 10, 11 for much longer time!

Summary: Lucene / Solr

Minimum version stays at Java 8

Full runtime support for Java 9 starting with
Lucene/Solr 7.0

Speed improvements by MR-JAR usage after
Lucene/Solr 7.3

Solr: Support for Java 10+ since Solr 7.3
(startup scripts were broken)

Thank youl!

Questions?

