
DBG / June 11, 2018 / © 2018 IBM Corporation

Search &
Recommendations:  
3 Sides of the Same Coin

Nick Pentreath
Principal Engineer

@MLnick

DBG / June 11, 2018 / © 2018 IBM Corporation

About

@MLnick on Twitter & Github

Principal Engineer, IBM

CODAIT - Center for Open-Source Data & AI
Technologies

Machine Learning & AI

Apache Spark committer & PMC

Author of Machine Learning with Spark

Various conferences & meetups

DBG / June 11, 2018 / © 2018 IBM Corporation

Center for Open Source Data and AI Technologies

CODAIT
codait.org

CODAIT aims to make AI solutions
dramatically easier to create, deploy,
and manage in the enterprise

Relaunch of the Spark Technology
Center (STC) to reflect expanded
mission

Improving Enterprise AI Lifecycle in Open Source

http://codait.org/

DBG / June 11, 2018 / © 2018 IBM Corporation

Agenda

Recommender systems overview

Search & Recommendations

3 Sides of the Coin

Performance

Summary

DBG / June 11, 2018 / © 2018 IBM Corporation

Recommender Systems

DBG / June 11, 2018 / © 2018 IBM Corporation

Users and Items
Recommender Systems

DBG / June 11, 2018 / © 2018 IBM Corporation

System Requirements
Recommender Systems

Filtering &
Grouping

Business
Rules

DBG / June 11, 2018 / © 2018 IBM Corporation

Events
Recommender Systems

– Implicit preference data

• Online – page view, click

• Commerce – add-to-cart, purchase, return

– Explicit preference data

• Ratings, reviews

– Intent

• Search query

– Social

• Like, share, follow, unfollow, block

DBG / June 11, 2018 / © 2018 IBM Corporation

Context
Recommender Systems

DBG / June 11, 2018 / © 2018 IBM Corporation

How to handle implicit feedback?
Recommender Systems

DBG / June 11, 2018 / © 2018 IBM Corporation

Cold Start
Recommender Systems

New items

– No historical interaction data

– Typically use baselines or item content

New (or unknown) users

– Previously unseen or anonymous users have no user
profile or historical interactions

– Have context data (but possibly very limited)

– Cannot directly use collaborative filtering models

• Item-similarity for current item

• Represent user as aggregation of items

• Contextual models can incorporate short-term history

DBG / June 11, 2018 / © 2018 IBM Corporation

Prediction
Recommender Systems

Recommendation is ranking

– Given a user and context, rank the available items in
order of likelihood that the user will interact with them

Sort
items

DBG / June 11, 2018 / © 2018 IBM Corporation

Serving Requirements
Recommender Systems

– Serving => ranking large # items

– Often need to filter

• categories, popularity, price, geo, time

– Use all data at prediction time

• content, context, preference, session

– Need to scale with item set and feature set

– Handle cold start

• content-based models or fallbacks, item-aggregates

– Easily incorporate new preference data

• model re-training, fold in

DBG / June 11, 2018 / © 2018 IBM Corporation

Search &
Recommendations

DBG / June 11, 2018 / © 2018 IBM Corporation

Prelude: Ratings Matrix
Search & Recommendation

DBG / June 11, 2018 / © 2018 IBM Corporation

Prelude: Item-item Co-occurrence
Search & Recommendation

One of the earliest approaches

– Compute item co-occurrence matrix from ratings
matrix, i.e. X t X

– Scoring can be online or pre-computed

– Similarity metric between items

DBG / June 11, 2018 / © 2018 IBM Corporation

Prelude: Matrix Factorization
Search & Recommendation

One of the de facto standard models

– Find two smaller matrices (called the factor
matrices) that approximate the ratings matrix

– Minimize the reconstruction error (i.e. rating
prediction / completion)

– Efficient, scalable algorithms

• Gradient Descent; Alternating Least Squares (ALS)

– Prediction is simple

– Can handle implicit data through weighting

DBG / June 11, 2018 / © 2018 IBM Corporation

Recommendation engines
Search & Recommendation

Recommendation is ranking

– Given a user and context, rank the available items in
order of likelihood that the user will interact with them

Sort
items

Compute
scores

DBG / June 11, 2018 / © 2018 IBM Corporation

Search engines
Search & Recommendation

Search is ranking

– Given a query, rank the available items in order of
similarity of item to query

Sort
items

“cat videos”

Compute
similarity

DBG / June 11, 2018 / © 2018 IBM Corporation

Meeting our Requirements?
Search & Recommendation

– Serving => ranking large # items

– Often need to filter

• categories, popularity, price, geo, time

– Use all data at prediction time

• content, context, preference, session

– Need to scale with item set and feature set

– Handle cold start

• content-based models or fallbacks, item-aggregates

– Easily incorporate new preference data

• model re-training, fold in

Inverted
indexing

Model
dependent

DBG / June 11, 2018 / © 2018 IBM Corporation

3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Broad approaches
3 Sides of the Coin

Score-then-
search Native search Custom

ranking

DBG / June 11, 2018 / © 2018 IBM Corporation

Score-then-search
3 Sides of the Coin

Score-then-
search

Scoring
system

Score

Search
engine

Search
engine ResultsFilter

Filter
Scoring
system ResultsScore

DBG / June 11, 2018 / © 2018 IBM Corporation

Score-then-search
3 Sides of the Coin

Score-then-
search

• Complete flexibility in
model

• Easier to incorporate richer
content features

• Can optimize scoring
component

• Maintain (at least) 2
systems

• Filtering challenges

• Round trips between
systems

DBG / June 11, 2018 / © 2018 IBM Corporation

Native Search
3 Sides of the Coin

Native search Pre-
compute

Index
Search
engine

ResultsSearch

DBG / June 11, 2018 / © 2018 IBM Corporation

Native Search
3 Sides of the Coin

Native search

Pre-compute Index

DBG / June 11, 2018 / © 2018 IBM Corporation

Native Search
3 Sides of the Coin

Native search

Indexed items Search query

DBG / June 11, 2018 / © 2018 IBM Corporation

Native Search
3 Sides of the Coin

Native search

• No changes to search
engine required

• Very fast & flexible at query
time

• Scalable - pre-compute +
thresholding

• Can use (almost) all data

• Must decide what to pre-
compute

• No ordering retained in
indexed terms

• More difficult to include
richer content data (image,
audio)

DBG / June 11, 2018 / © 2018 IBM Corporation

Native Search
3 Sides of the Coin

Native search
Universal recommender

The Mahout Correlated Cross-Occurrence
Algorithm

https://github.com/actionml/universal-recommender
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Ranking
3 Sides of the Coin

Custom
ranking

Scoring
system

Score & filter
Search
engine

Results

One system

DBG / June 11, 2018 / © 2018 IBM Corporation

Search Ranking
3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Can we use the same machinery?
3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Delimited Payload Filter
3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Scoring Function
3 Sides of the Coin

– Native script (Java), compiled for speed

– Scoring function computes dot product by:

• For each document vector index (“term”), retrieve
payload

• Score += payload * query(i)

– Normalizes with query vector norm and document
vector norm for cosine similarity

DBG / June 11, 2018 / © 2018 IBM Corporation

Can we use the same machinery?
3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Get search for free!
3 Sides of the Coin

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Ranking
3 Sides of the Coin

Custom
ranking

• Combine search & scoring
into one system

• Potential to incorporate
richer content features &
contextual models

• Combine best of both
worlds between pre-
computing & online scoring
(sort of)

• Requires custom plugin for
your search engine

• Scaling limits &
performance
considerations

• Must decide how to blend
interactions (e.g. weights)

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Ranking
3 Sides of the Coin

Custom
ranking

Spark & Elasticsearch Recommender on
IBM Code

Elasticsearch vector scoring plugin

https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/MLnick/elasticsearch-vector-scoring

DBG / June 11, 2018 / © 2018 IBM Corporation

Performance

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Scoring Performance
Performance

*3x nodes, 30x shards

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Scoring Performance
Performance

*3x nodes, k=50

DBG / June 11, 2018 / © 2018 IBM Corporation

Comparison to Score-then-search
Performance

*3x nodes, 30x shards, k=50, 1,000,000 items

DBG / June 11, 2018 / © 2018 IBM Corporation

Scaling custom scoring - LSH
Performance

*3x nodes, 30x shards, k=50, 1,000,000 items

DBG / June 11, 2018 / © 2018 IBM Corporation

Pure Search Approaches

DBG / June 11, 2018 / © 2018 IBM Corporation

“Pure” search engine approaches
Pure Search

– More like this

• Content similarity

– Significant terms queries

• 2 stage query:

– 1st query interactions to get set of items for a user

– 2nd significant terms aggregation with the item set
as background

• Result is very similar to co-occurrence
approaches

• Round trips may be slow

DBG / June 11, 2018 / © 2018 IBM Corporation

Conclusion

DBG / June 11, 2018 / © 2018 IBM Corporation

Custom Ranking – Future Directions
Conclusion

– Apache Solr version

• https://github.com/saaay71/solr-vector-scoring

– Improve performance

• Improved scoring performance for vector scoring
plugin: https://github.com/lior-k/fast-elasticsearch-
vector-scoring

• Investigate performance of LSH-filtered scoring

• Dig deeper into Lucene internals to combine matrix-
vector math with search & filter?

– Investigate more complex models

https://github.com/saaay71/solr-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring

DBG / June 11, 2018 / © 2018 IBM Corporation

Summary
Conclusion

All approaches have different tradeoffs

Score-then-
search Native searchCustom

ranking

Max model flexibility Max search integrationBalanced

DBG / June 11, 2018 / © 2018 IBM Corporation

Thank you

codait.org

twitter.com/MLnick

github.com/MLnick

developer.ibm.com/code

FfDL

Sign up for IBM Cloud and try Watson Studio!

https://ibm.biz/BdZ6qf

IBM Code Pattern

https://datascience.ibm.com/

MAX

http://codait.org/
http://codait.org/
http://twitter.com/MLnick
http://twitter.com/MLnick
http://twitter.com/MLnick
http://github.com/MLnick
http://github.com/MLnick
http://github.com/MLnick
http://developer.ibm.com/code
http://developer.ibm.com/code
https://ibm.biz/BdZ6qf
https://ibm.biz/BdZ6qf
https://developer.ibm.com/code/patterns/build-a-recommender-with-apache-spark-and-elasticsearch/
https://datascience.ibm.com/

Call for Code inspires developers to
solve pressing global problems
with sustainable software
solutions, delivering  
on their vast potential to do good.

Bringing together NGOs, academic
institutions, enterprises, and
startup developers to compete
build effective disaster mitigation
solutions, with a focus on health
and well-being.

International Federation of Red
Cross/Red Crescent, The
American Red Cross, and the
United Nations Office of Human
Rights combine for the Call for
Code Award to elevate the profile of
developers.

Award winners will receive long-term
support through open source
foundations, financial prizes, the
opportunity to present their solution
to leading VCs, and will deploy their
solution through IBM’s Corporate
Service Corps.

Developers will jump-start their project
with dedicated IBM Code Patterns,
combined with optional enterprise
technology to build projects over the
course of three months.

Judged by the world’s most renowned
technologists, the grand prize will be
presented in October at an Award
Event.

developer.ibm.com/callforcode

http://developer.ibm.com/callforcode
http://developer.ibm.com/callforcode
http://developer.ibm.com/callforcode

DBG / June 11, 2018 / © 2018 IBM Corporation

Links & References

Spark & Elasticsearch Recommender on IBM Code

Elasticsearch vector scoring plugin

Solr vector scoring plugin

Improved performance Elasticsearch plugin

Elasticsearch More Like This Query

Elasticsearch significant terms aggregation

Universal recommender

The Mahout Correlated Cross-Occurrence Algorithm

https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/MLnick/elasticsearch-vector-scoring
https://github.com/MLnick/elasticsearch-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-significantterms-aggregation.html
https://github.com/actionml/universal-recommender
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html

DBG / June 11, 2018 / © 2018 IBM Corporation

