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About

@MLnick on Twitter & Github 

Principal Engineer, IBM 

CODAIT - Center for Open-Source Data & AI 
Technologies 

Machine Learning & AI 

Apache Spark committer & PMC 

Author of Machine Learning with Spark 

Various conferences & meetups 



DBG / June 11, 2018 / © 2018 IBM Corporation

Center for Open Source Data and AI Technologies 

CODAIT    
codait.org

CODAIT aims to make AI solutions 
dramatically easier to create, deploy, 
and manage in the enterprise 

Relaunch of the Spark Technology 
Center (STC) to reflect expanded 
mission  

Improving Enterprise AI Lifecycle in Open Source

http://codait.org/
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Recommender Systems
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Users and Items
Recommender Systems
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System Requirements
Recommender Systems

Filtering & 
Grouping

Business 
Rules



DBG / June 11, 2018 / © 2018 IBM Corporation

Events
Recommender Systems

– Implicit preference data 

• Online – page view, click 

• Commerce – add-to-cart, purchase, return 

– Explicit preference data 

• Ratings, reviews 

– Intent 

• Search query 

– Social 

• Like, share, follow, unfollow, block
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Context
Recommender Systems
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How to handle implicit feedback?
Recommender Systems
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Cold Start
Recommender Systems

New items 

– No historical interaction data 

– Typically use baselines or item content 

New (or unknown) users 

– Previously unseen or anonymous users have no user 
profile or historical interactions 

– Have context data (but possibly very limited) 

– Cannot directly use collaborative filtering models 

• Item-similarity for current item 

• Represent user as aggregation of items 

• Contextual models can incorporate short-term history
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Prediction
Recommender Systems

Recommendation is ranking 

– Given a user and context, rank the available items in 
order of likelihood that the user will interact with them

Sort 
items
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Serving Requirements
Recommender Systems

– Serving => ranking large # items 

– Often need to filter 

• categories, popularity, price, geo, time 

– Use all data at prediction time 

• content, context, preference, session 

– Need to scale with item set and feature set 

– Handle cold start 

• content-based models or fallbacks, item-aggregates 

– Easily incorporate new preference data 

• model re-training, fold in
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Search & 
Recommendations
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Prelude: Ratings Matrix
Search & Recommendation



DBG / June 11, 2018 / © 2018 IBM Corporation

Prelude: Item-item Co-occurrence
Search & Recommendation

One of the earliest approaches 

– Compute item co-occurrence matrix from ratings 
matrix, i.e. X t X

– Scoring can be online or pre-computed 

– Similarity metric between items
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Prelude: Matrix Factorization
Search & Recommendation

One of the de facto standard models 

– Find two smaller matrices (called the factor 
matrices) that approximate the ratings matrix 

– Minimize the reconstruction error (i.e. rating 
prediction / completion)

– Efficient, scalable algorithms 

• Gradient Descent; Alternating Least Squares (ALS) 

– Prediction is simple 

– Can handle implicit data through weighting
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Recommendation engines
Search & Recommendation

Recommendation is ranking 

– Given a user and context, rank the available items in 
order of likelihood that the user will interact with them

Sort 
items

Compute 
scores
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Search engines
Search & Recommendation

Search is ranking 

– Given a query, rank the available items in order of 
similarity of item to query

Sort 
items

“cat videos”

Compute 
similarity
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Meeting our Requirements?
Search & Recommendation

– Serving => ranking large # items 

– Often need to filter 

• categories, popularity, price, geo, time 

– Use all data at prediction time 

• content, context, preference, session 

– Need to scale with item set and feature set 

– Handle cold start 

• content-based models or fallbacks, item-aggregates 

– Easily incorporate new preference data 

• model re-training, fold in

Inverted 
indexing

Model 
dependent
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3 Sides of the Coin
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Broad approaches
3 Sides of the Coin

Score-then-
search Native search Custom 

ranking
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Score-then-search
3 Sides of the Coin

Score-then-
search

Scoring 
system

Score

Search 
engine

Search 
engine ResultsFilter

Filter
Scoring 
system ResultsScore
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Score-then-search
3 Sides of the Coin

Score-then-
search

• Complete flexibility in 
model 

• Easier to incorporate richer 
content features 

• Can optimize scoring 
component

• Maintain (at least) 2 
systems 

• Filtering challenges 

• Round trips between 
systems
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Native Search
3 Sides of the Coin

Native search Pre-
compute

Index
Search 
engine

ResultsSearch
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Native Search
3 Sides of the Coin

Native search

Pre-compute Index
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Native Search
3 Sides of the Coin

Native search

Indexed items Search query
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Native Search
3 Sides of the Coin

Native search

• No changes to search 
engine required 

• Very fast & flexible at query 
time 

• Scalable - pre-compute + 
thresholding 

• Can use (almost) all data

• Must decide what to pre-
compute 

• No ordering retained in 
indexed terms 

• More difficult to include 
richer content data (image, 
audio)
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Native Search
3 Sides of the Coin

Native search
Universal recommender 

The Mahout Correlated Cross-Occurrence 
Algorithm

https://github.com/actionml/universal-recommender
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
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Custom Ranking
3 Sides of the Coin

Custom 
ranking

Scoring 
system

Score & filter
Search 
engine

Results

One system
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Search Ranking
3 Sides of the Coin
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Can we use the same machinery?
3 Sides of the Coin
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Delimited Payload Filter
3 Sides of the Coin
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Custom Scoring Function
3 Sides of the Coin

– Native script (Java), compiled for speed 

– Scoring function computes dot product by: 

• For each document vector index (“term”), retrieve 
payload 

• Score += payload * query(i) 

– Normalizes with query vector norm and document 
vector norm for cosine similarity
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Can we use the same machinery?
3 Sides of the Coin
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Get search for free!
3 Sides of the Coin
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Custom Ranking
3 Sides of the Coin

Custom 
ranking

• Combine search & scoring 
into one system 

• Potential to incorporate 
richer content features & 
contextual models 

• Combine best of both 
worlds between pre-
computing & online scoring 
(sort of)

• Requires custom plugin for 
your search engine 

• Scaling limits & 
performance 
considerations 

• Must decide how to blend 
interactions (e.g. weights)
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Custom Ranking
3 Sides of the Coin

Custom 
ranking

Spark & Elasticsearch Recommender on 
IBM Code 

Elasticsearch vector scoring plugin

https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/MLnick/elasticsearch-vector-scoring
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Performance
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Custom Scoring Performance
Performance

*3x nodes, 30x shards
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Custom Scoring Performance
Performance

*3x nodes, k=50
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Comparison to Score-then-search
Performance

*3x nodes, 30x shards, k=50, 1,000,000 items
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Scaling custom scoring - LSH
Performance

*3x nodes, 30x shards, k=50, 1,000,000 items
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Pure Search Approaches
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“Pure” search engine approaches
Pure Search

– More like this 

• Content similarity 

– Significant terms queries 

• 2 stage query: 

– 1st query interactions to get set of items for a user 

– 2nd significant terms aggregation with the item set 
as background 

• Result is very similar to co-occurrence 
approaches 

• Round trips may be slow
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Conclusion
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Custom Ranking – Future Directions
Conclusion

– Apache Solr version 

• https://github.com/saaay71/solr-vector-scoring 

– Improve performance 

• Improved scoring performance for vector scoring 
plugin: https://github.com/lior-k/fast-elasticsearch-
vector-scoring  

• Investigate performance of LSH-filtered scoring  

• Dig deeper into Lucene internals to combine matrix-
vector math with search & filter? 

– Investigate more complex models

https://github.com/saaay71/solr-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
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Summary
Conclusion

All approaches have different tradeoffs

Score-then-
search Native searchCustom 

ranking

Max model flexibility Max search integrationBalanced
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Thank you

codait.org 

twitter.com/MLnick 

github.com/MLnick 

developer.ibm.com/code

        
FfDL

Sign up for IBM Cloud and try Watson Studio! 

https://ibm.biz/BdZ6qf 

IBM Code Pattern 

https://datascience.ibm.com/

MAX

http://codait.org/
http://codait.org/
http://twitter.com/MLnick
http://twitter.com/MLnick
http://twitter.com/MLnick
http://github.com/MLnick
http://github.com/MLnick
http://github.com/MLnick
http://developer.ibm.com/code
http://developer.ibm.com/code
https://ibm.biz/BdZ6qf
https://ibm.biz/BdZ6qf
https://developer.ibm.com/code/patterns/build-a-recommender-with-apache-spark-and-elasticsearch/
https://datascience.ibm.com/


Call for Code inspires developers to 
solve pressing global problems 
with sustainable software 
solutions, delivering  
on their vast potential to do good. 

Bringing together NGOs, academic 
institutions, enterprises, and 
startup developers to compete 
build effective disaster mitigation 
solutions, with a focus on health 
and well-being. 

International  Federation of Red 
Cross/Red Crescent, The 
American Red Cross, and the 
United Nations Office of Human 
Rights  combine for the Call for 
Code Award to elevate the profile of 
developers.

Award winners will receive long-term 
support through open source 
foundations, financial prizes, the 
opportunity to present their solution 
to leading VCs,  and will deploy their 
solution through IBM’s Corporate 
Service Corps. 

Developers will jump-start their project 
with dedicated IBM Code Patterns, 
combined  with optional enterprise 
technology to build projects  over the 
course of three months. 

Judged by the world’s most renowned 
technologists, the grand prize will be 
presented in October at an Award 
Event. 

developer.ibm.com/callforcode

http://developer.ibm.com/callforcode
http://developer.ibm.com/callforcode
http://developer.ibm.com/callforcode
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Links & References

Spark & Elasticsearch Recommender on IBM Code 

Elasticsearch vector scoring plugin 

Solr vector scoring plugin 

Improved performance Elasticsearch plugin 

Elasticsearch More Like This Query 

Elasticsearch significant terms aggregation 

Universal recommender 

The Mahout Correlated Cross-Occurrence Algorithm

https://github.com/IBM/elasticsearch-spark-recommender
https://github.com/MLnick/elasticsearch-vector-scoring
https://github.com/MLnick/elasticsearch-vector-scoring
https://github.com/saaay71/solr-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-significantterms-aggregation.html
https://github.com/actionml/universal-recommender
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
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