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Who Am I?
ÃWorked on Hadoop since Jan 2006

ÃMapReduce, Security, Hive, and ORC

ÃWorked on different file formats
–Sequence File, RCFile, ORC File, T-File, and Avro 

requirements
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Goal 
ÃBenchmark for Spark SQL

ÃSeeking to discover unknowns
–How do the different formats perform?
–What could they do better?

ÃUse real & diverse data sets
–Over-reliance on artificial datasets leads to weakness

ÃOpen & reviewed benchmarks
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The File Formats
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Avro
ÃCross-language file format for Hadoop
ÃSchema evolution was primary goal
ÃSchema segregated from data
–Unlike Protobuf and Thrift

ÃRow major format



6 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

JSON
ÃSerialization format for HTTP & Javascript
ÃText-format with MANY parsers
ÃSchema completely integrated with data
ÃRow major format
ÃCompression applied on top
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ORC
ÃOriginally part of Hive to replace RCFile
–Now top-level project

ÃSchema segregated into footer

ÃColumn major format with stripes

ÃRich type model, stored top-down
ÃIntegrated compression, indexes, & stats
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Parquet
ÃDesign based on Google’s Dremel paper
ÃSchema segregated into footer
ÃColumn major format with stripes
ÃSimpler type-model with logical types
ÃAll data pushed to leaves of the tree
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Data Sets
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NYC Taxi Data
ÃEvery taxi cab ride in NYC from 2009

–Publically available 

–http://tinyurl.com/nyc-taxi-analysis

Ã18 columns with no null values

–Doubles, integers, decimals, & strings

Ã2 months of data – 22.7 million rows
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Sales
ÃGenerated data
–Real schema from a production Hive deployment
–Random data based on the data statistics

Ã55 columns with lots of nulls
–A little structure
–Timestamps, strings, longs, booleans, list, & struct

Ã25 million rows
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Github Logs
ÃAll actions on Github public repositories 
–Publically available 
–https://www.githubarchive.org/ 

Ã704 columns with a lot of structure & nulls 
–Pretty much the kitchen sink

Ã 1/2 month of data – 10.5 million rows
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Finding the Github Schema
ÃThe data is all in JSON.
ÃNo schema for the data is published.
ÃWe wrote a JSON schema discoverer.
–Scans the document and figures out the types

ÃAvailable in ORC tool jar.
ÃSchema is huge (12k)
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Software
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Software Versions
ÃAll of these projects are evolving rapidly 
–Spark 2.3.1
–Avro 1.8.2
–ORC 1.5.1
–Parquet 1.8.2
–Spark-Avro 4.0.0

ÃDependency hell !
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Configuration
ÃSpark Configuration
–spark.sql.orc.filterPushdown = true
–spark.sql.orc.impl = native

ÃHadoop Configuration
–session.sparkContext().hadoopConfiguration()
–avro.mapred.ignore.inputs.without.extension = false
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Spark-Avro
ÃBenchmark uses Spark SQL’s FileFormat
–JSON, ORC, and Parquet all in Spark
–Avro is provided by Databricks via spark-avro

ÃIt doesn’t support all of the Spark types
–Timestamp as int96
–Decimal as bytes
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Storage costs
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Compression
ÃData size matters!
–Hadoop stores all your data, but requires hardware
–Is one factor in read speed (HDFS ~15mb/sec)

ÃORC and Parquet use RLE & Dictionaries
ÃAll the formats have general compression
–ZLIB (GZip) – tight compression, slower
–Snappy – some compression, faster
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Taxi Size Analysis
ÃDon’t use JSON
ÃUse either Snappy or Zlib compression
ÃAvro’s small compression window hurts
ÃParquet Zlib is smaller than ORC
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Sales Size Analysis
ÃORC did better than expected
–String columns have small cardinality
–Lots of timestamp columns
–No doubles J
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Github Size Analysis
ÃSurprising win for JSON and Avro
–Worst when uncompressed
–Best with zlib

ÃMany partially shared strings
–ORC and Parquet don’t compress across columns

ÃNeed to investigate Zstd with dictionary
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Use Cases
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Full Table Scans
ÃRead all columns & rows
ÃAll formats except JSON are splittable
–Different workers do different parts of file

ÃTaxi schema supports ColumnarBatch
–All primitive types
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Taxi Read Performance Analysis
ÃJSON is very slow to read
–Large storage size for this data set
–Needs to do a LOT of string parsing

ÃParquet is faster
–ORC is going through an extra layer
–VectorizedRowBatch -> OrcStruct -> ColumnarBatch
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Sales Read Performance Analysis
ÃRead performance is dominated by format
–Compression matters less for this data set
–Straight ordering: ORC, Parquet, & JSON

ÃUses Row instead of ColumnarBatch
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Github Read Performance Analysis
ÃJSON did really well
ÃA lot of columns needs more space
–We need bigger stripes (add min rows in ORC-190)
–Rows/stripe - ORC: 18.6k, Parquet: 88.1k

ÃParquet struggles
–Twitter recommends against Parquet for this case
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Column Projection
ÃOften just need a few columns
–Only ORC & Parquet are columnar
–Only read, decompress, & deserialize some columns

ÃSpark FileFormat passes in desired schema
–Drop columns that aren’t needed
–JSON and Avro read first and then drop columns
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Predicate Pushdown
ÃQuery: 
– select first_name, last_name from employees where 

hire_date between ‘01/01/2017’ and ‘01/03/2017’

ÃPredicate:
–hire_date between ‘01/01/2017’ and ‘01/03/2017’

ÃGiven to FileFormat via filters
ÃFor benchmark, filter on a sorted column



37 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Predicate Pushdown
ÃORC & Parquet indexes with min & max

–Sorted data is critical!

ÃORC has optional bloom filters

ÃReader filters out sections of file
– Entire file

– Stripe

–Row group (only ORC, default 10k rows)

ÃEngine needs to apply row level filter
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Predicate Pushdown
ÃParquet doesn’t pushdown timestamp filters
– Taxi and Github filters were on timestamps.

ÃSpark defaults ORC predicate pushdown off.

ÃSmall ORC stripes for Github lead to sub-10k 
row read.

ÃBecause predicate pushdown is an optimization, 
it isn’t clear when it isn’t used.
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Metadata Access
ÃORC & Parquet store metadata
–Stored in file footer
–File schema
–Number of records
–Min, max, count of each column

ÃProvides O(1) Access
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Conclusions
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Recommendations
ÃDisclaimer – Everything changes!
–Both these benchmarks and the formats will change.

ÃEvaluate needs
–Column projection and predicate pushdown are only 

in ORC & Parquet
–Determine how to sort data
–Are bloom filters useful?
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Thank you!
Twitter: @owen_omalley
Email: owen@hortonworks.com


