
Fast Spark Access To Your Data -
Avro, JSON, ORC, and Parquet 

Owen O’Malley
owen@hortonworks.com
@owen_omalley
June 2018



2 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Who Am I?
ÃWorked on Hadoop since Jan 2006

ÃMapReduce, Security, Hive, and ORC

ÃWorked on different file formats
–Sequence File, RCFile, ORC File, T-File, and Avro 

requirements



3 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Goal 
ÃBenchmark for Spark SQL

ÃSeeking to discover unknowns
–How do the different formats perform?
–What could they do better?

ÃUse real & diverse data sets
–Over-reliance on artificial datasets leads to weakness

ÃOpen & reviewed benchmarks



4 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

The File Formats



5 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Avro
ÃCross-language file format for Hadoop
ÃSchema evolution was primary goal
ÃSchema segregated from data
–Unlike Protobuf and Thrift

ÃRow major format



6 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

JSON
ÃSerialization format for HTTP & Javascript
ÃText-format with MANY parsers
ÃSchema completely integrated with data
ÃRow major format
ÃCompression applied on top



7 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

ORC
ÃOriginally part of Hive to replace RCFile
–Now top-level project

ÃSchema segregated into footer

ÃColumn major format with stripes

ÃRich type model, stored top-down
ÃIntegrated compression, indexes, & stats



8 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Parquet
ÃDesign based on Google’s Dremel paper
ÃSchema segregated into footer
ÃColumn major format with stripes
ÃSimpler type-model with logical types
ÃAll data pushed to leaves of the tree



9 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Data Sets



10 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

NYC Taxi Data
ÃEvery taxi cab ride in NYC from 2009

–Publically available 

–http://tinyurl.com/nyc-taxi-analysis

Ã18 columns with no null values

–Doubles, integers, decimals, & strings

Ã2 months of data – 22.7 million rows



11 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Sales
ÃGenerated data
–Real schema from a production Hive deployment
–Random data based on the data statistics

Ã55 columns with lots of nulls
–A little structure
–Timestamps, strings, longs, booleans, list, & struct

Ã25 million rows



12 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Github Logs
ÃAll actions on Github public repositories 
–Publically available 
–https://www.githubarchive.org/ 

Ã704 columns with a lot of structure & nulls 
–Pretty much the kitchen sink

Ã 1/2 month of data – 10.5 million rows



13 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Finding the Github Schema
ÃThe data is all in JSON.
ÃNo schema for the data is published.
ÃWe wrote a JSON schema discoverer.
–Scans the document and figures out the types

ÃAvailable in ORC tool jar.
ÃSchema is huge (12k)



14 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Software



15 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Software Versions
ÃAll of these projects are evolving rapidly 
–Spark 2.3.1
–Avro 1.8.2
–ORC 1.5.1
–Parquet 1.8.2
–Spark-Avro 4.0.0

ÃDependency hell !



16 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Configuration
ÃSpark Configuration
–spark.sql.orc.filterPushdown = true
–spark.sql.orc.impl = native

ÃHadoop Configuration
–session.sparkContext().hadoopConfiguration()
–avro.mapred.ignore.inputs.without.extension = false



17 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Spark-Avro
ÃBenchmark uses Spark SQL’s FileFormat
–JSON, ORC, and Parquet all in Spark
–Avro is provided by Databricks via spark-avro

ÃIt doesn’t support all of the Spark types
–Timestamp as int96
–Decimal as bytes



18 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Storage costs



19 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Compression
ÃData size matters!
–Hadoop stores all your data, but requires hardware
–Is one factor in read speed (HDFS ~15mb/sec)

ÃORC and Parquet use RLE & Dictionaries
ÃAll the formats have general compression
–ZLIB (GZip) – tight compression, slower
–Snappy – some compression, faster



20 © Hortonworks Inc. 2011 – 2016. All Rights Reserved



21 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Taxi Size Analysis
ÃDon’t use JSON
ÃUse either Snappy or Zlib compression
ÃAvro’s small compression window hurts
ÃParquet Zlib is smaller than ORC



22 © Hortonworks Inc. 2011 – 2016. All Rights Reserved



23 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Sales Size Analysis
ÃORC did better than expected
–String columns have small cardinality
–Lots of timestamp columns
–No doubles J



24 © Hortonworks Inc. 2011 – 2016. All Rights Reserved



25 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Github Size Analysis
ÃSurprising win for JSON and Avro
–Worst when uncompressed
–Best with zlib

ÃMany partially shared strings
–ORC and Parquet don’t compress across columns

ÃNeed to investigate Zstd with dictionary



26 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Use Cases



27 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Full Table Scans
ÃRead all columns & rows
ÃAll formats except JSON are splittable
–Different workers do different parts of file

ÃTaxi schema supports ColumnarBatch
–All primitive types



28 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

1

2

4

8

16

32

64

128

256

512

orc parquet json orc parquet json orc parquet

taxi taxi taxi taxi taxi taxi taxi taxi

none none none zlib zlib zlib snappy snappy

Taxi Times



29 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Taxi Read Performance Analysis
ÃJSON is very slow to read
–Large storage size for this data set
–Needs to do a LOT of string parsing

ÃParquet is faster
–ORC is going through an extra layer
–VectorizedRowBatch -> OrcStruct -> ColumnarBatch



30 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

1

2

4

8

16

32

64

128

256

512

orc parquet json orc parquet orc parquet

sales sales sales sales sales sales sales

none none none zlib zlib snappy snappy

Sales Times



31 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Sales Read Performance Analysis
ÃRead performance is dominated by format
–Compression matters less for this data set
–Straight ordering: ORC, Parquet, & JSON

ÃUses Row instead of ColumnarBatch



32 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

1

2

4

8

16

32

64

128

256

512

1024

orc parquet json orc parquet orc parquet

github github github github github github github

none none none zlib zlib snappy snappy

Github Times



33 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Github Read Performance Analysis
ÃJSON did really well
ÃA lot of columns needs more space
–We need bigger stripes (add min rows in ORC-190)
–Rows/stripe - ORC: 18.6k, Parquet: 88.1k

ÃParquet struggles
–Twitter recommends against Parquet for this case



34 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Column Projection
ÃOften just need a few columns
–Only ORC & Parquet are columnar
–Only read, decompress, & deserialize some columns

ÃSpark FileFormat passes in desired schema
–Drop columns that aren’t needed
–JSON and Avro read first and then drop columns



35 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

0

2

4

6

8

10

12

14

16

18

20

none snappy zlib none snappy zlib none snappy zlib none snappy zlib none snappy zlib none snappy zlib

orc orc orc parquet parquet parquet orc orc orc parquet parquet parquet orc orc orc parquet parquet parquet

github github github github github github sales sales sales sales sales sales taxi taxi taxi taxi taxi taxi

Column Projection % Sizes



36 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Predicate Pushdown
ÃQuery: 
– select first_name, last_name from employees where 

hire_date between ‘01/01/2017’ and ‘01/03/2017’

ÃPredicate:
–hire_date between ‘01/01/2017’ and ‘01/03/2017’

ÃGiven to FileFormat via filters
ÃFor benchmark, filter on a sorted column



37 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Predicate Pushdown
ÃORC & Parquet indexes with min & max

–Sorted data is critical!

ÃORC has optional bloom filters

ÃReader filters out sections of file
– Entire file

– Stripe

–Row group (only ORC, default 10k rows)

ÃEngine needs to apply row level filter



38 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

16777216

taxi sales github

Predicate Pushdown Rows

orc parquet total



39 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Predicate Pushdown
ÃParquet doesn’t pushdown timestamp filters
– Taxi and Github filters were on timestamps.

ÃSpark defaults ORC predicate pushdown off.

ÃSmall ORC stripes for Github lead to sub-10k 
row read.

ÃBecause predicate pushdown is an optimization, 
it isn’t clear when it isn’t used.



40 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Metadata Access
ÃORC & Parquet store metadata
–Stored in file footer
–File schema
–Number of records
–Min, max, count of each column

ÃProvides O(1) Access



41 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Conclusions



42 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Recommendations
ÃDisclaimer – Everything changes!
–Both these benchmarks and the formats will change.

ÃEvaluate needs
–Column projection and predicate pushdown are only 

in ORC & Parquet
–Determine how to sort data
–Are bloom filters useful?



43 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Thank you!
Twitter: @owen_omalley
Email: owen@hortonworks.com


