Fast Spark Access To Your Data -Avro, JSON, ORC, and Parquet

Owen O'Malley owen@hortonworks.com @owen_omalley

June 2018

Who Am I?

Worked on Hadoop since Jan 2006
MapReduce, Security, Hive, and ORC
Worked on different file formats

Sequence File, RCFile, ORC File, T-File, and Avro requirements

Goal

Benchmark for Spark SQL

- Seeking to discover unknowns
 - -How do the different formats perform?
 - -What could they do better?
- Use real & diverse data sets
 - -Over-reliance on artificial datasets leads to weakness
- Open & reviewed benchmarks

The File Formats

Avro

Cross-language file format for Hadoop
 Schema evolution was primary goal
 Schema segregated from data

 Unlike Protobuf and Thrift

 Row major format

JSON

- Serialization format for HTTP & Javascript
- Text-format with MANY parsers
- Schema completely integrated with data
- Row major format
- Compression applied on top

ORC

- Originally part of Hive to replace RCFile
 –Now top-level project
- Schema segregated into footer
- Column major format with stripes
- Rich type model, stored top-down
- Integrated compression, indexes, & stats

Parquet

Design based on Google's Dremel paper
Schema segregated into footer
Column major format with stripes
Simpler type-model with logical types
All data pushed to leaves of the tree

Data Sets

NYC Taxi Data

Every taxi cab ride in NYC from 2009

- -Publically available
- -http://tinyurl.com/nyc-taxi-analysis
- 18 columns with no null values
 - -Doubles, integers, decimals, & strings
- 2 months of data 22.7 million rows

Sales

Generated data

- -Real schema from a production Hive deployment
- -Random data based on the data statistics

•55 columns with lots of nulls

- –A little structure
- -Timestamps, strings, longs, booleans, list, & struct

25 million rows

Github Logs

All actions on Github public repositories

- -Publically available
- -https://www.githubarchive.org/
- •704 columns with a lot of structure & nulls
 - -Pretty much the kitchen sink
- 1/2 month of data 10.5 million rows

Finding the Github Schema

- The data is all in JSON.
- No schema for the data is published.
- We wrote a JSON schema discoverer.
 - -Scans the document and figures out the types
- Available in ORC tool jar.
- Schema is huge (12k)

Software

Software Versions

All of these projects are evolving rapidly

- -Spark 2.3.1
- -Avro 1.8.2
- -ORC 1.5.1
- -Parquet 1.8.2
- -Spark-Avro 4.0.0
- Dependency hell

Configuration

Spark Configuration

 -spark.sql.orc.filterPushdown = true
 -spark.sql.orc.impl = native

 Hadoop Configuration

 -session.sparkContext().hadoopConfiguration()
 -avro.mapred.ignore.inputs.without.extension = false

Spark-Avro

 Benchmark uses Spark SQL's FileFormat —JSON, ORC, and Parquet all in Spark —Avro is provided by Databricks via spark-avro

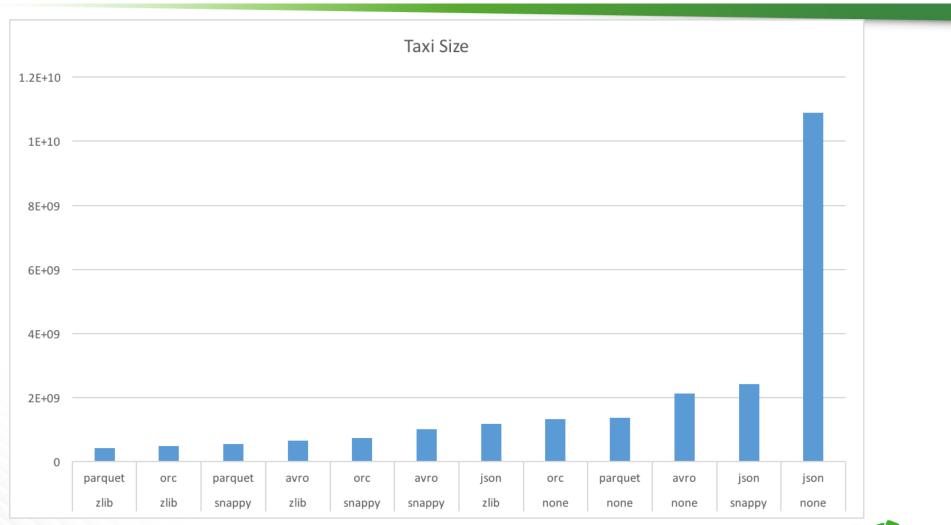
It doesn't support all of the Spark types

Timestamp as int96Decimal as bytes

Storage costs

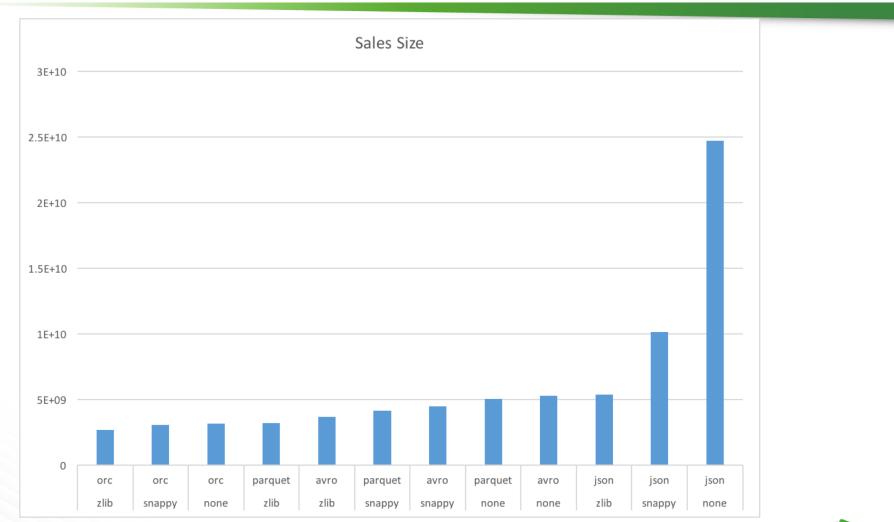
Compression

- Data size matters!
 - Hadoop stores all your data, but requires hardware
 Is one factor in read speed (HDFS ~15mb/sec)
- ORC and Parquet use RLE & Dictionaries
- All the formats have general compression —ZLIB (GZip) — tight compression, slower —Snappy — some compression, faster



Taxi Size Analysis

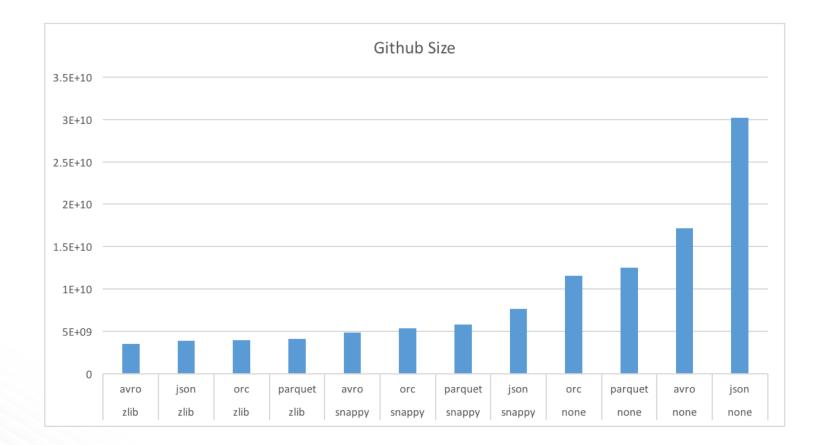
- Don't use JSON
- Use either Snappy or Zlib compression
- Avro's small compression window hurts
- Parquet Zlib is smaller than ORC



Sales Size Analysis

ORC did better than expected

String columns have small cardinality
Lots of timestamp columns
No doubles ^(C)



Github Size Analysis

Surprising win for JSON and Avro

- -Worst when uncompressed
- -Best with zlib

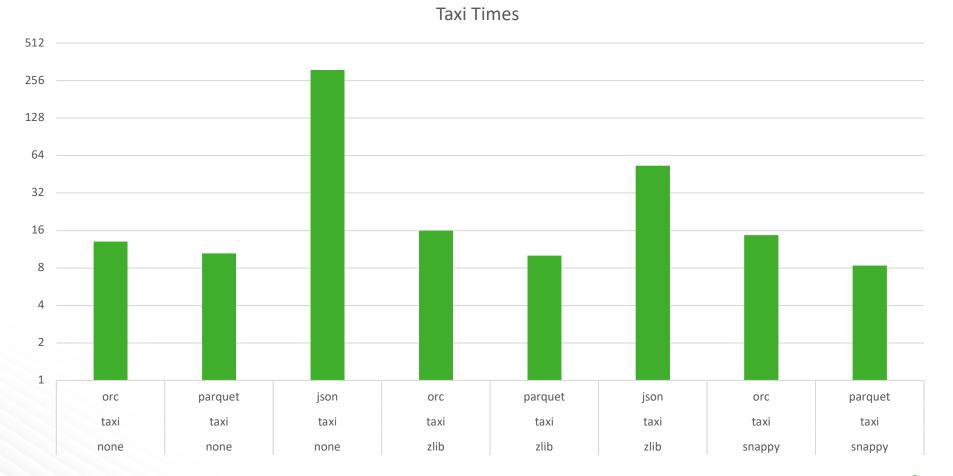
Many partially shared strings —ORC and Parquet don't compress across columns

Need to investigate Zstd with dictionary

Use Cases

Full Table Scans

- Read all columns & rows
- All formats except JSON are splittable
 Different workers do different parts of file
- Taxi schema supports ColumnarBatch —All primitive types



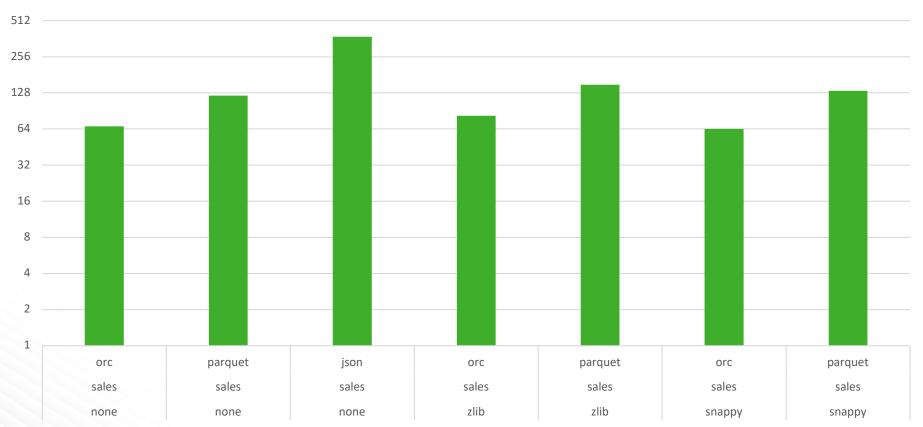
Taxi Read Performance Analysis

JSON is very slow to read

- -Large storage size for this data set
- -Needs to do a LOT of string parsing

Parquet is faster

- -ORC is going through an extra layer
- –VectorizedRowBatch -> OrcStruct -> ColumnarBatch



HORTONWORKS

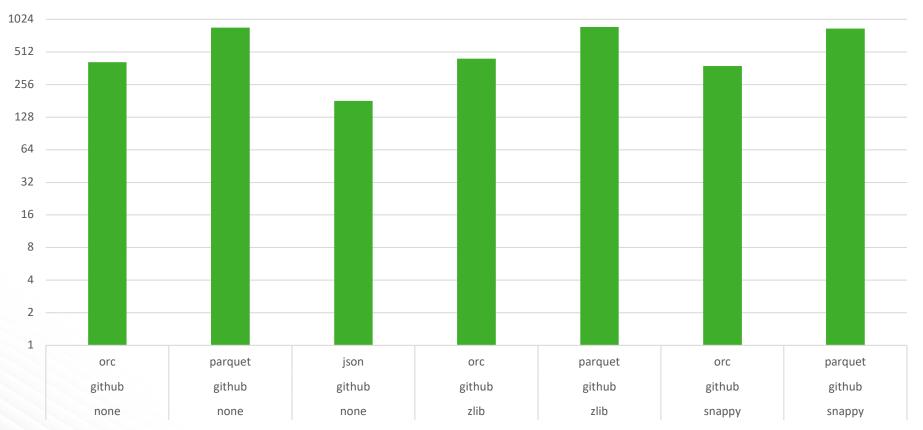
Sales Times

Sales Read Performance Analysis

Read performance is dominated by format

 Compression matters less for this data set
 Straight ordering: ORC, Parquet, & JSON

 Uses Row instead of ColumnarBatch



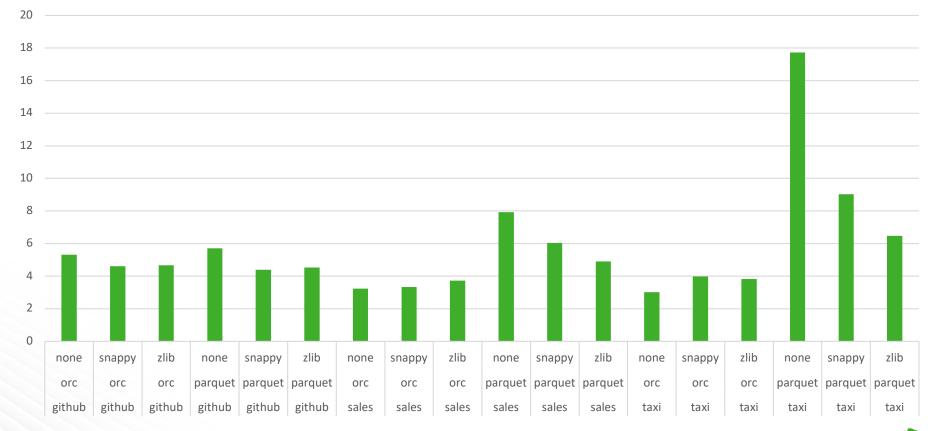
Github Read Performance Analysis

- JSON did really well
- A lot of columns needs more space
 We need bigger stripes (add min rows in ORC-190)
 Rows/stripe ORC: 18.6k, Parquet: 88.1k
- Parquet struggles
 - -Twitter recommends against Parquet for this case

Column Projection

- Often just need a few columns
 - -Only ORC & Parquet are columnar
 - -Only read, decompress, & deserialize some columns
- Spark FileFormat passes in desired schema
 - -Drop columns that aren't needed
 - –JSON and Avro read first and then drop columns

Column Projection % Sizes



Predicate Pushdown

Query:

- select first_name, last_name from employees where hire_date between '01/01/2017' and '01/03/2017'
- Predicate:
 - -hire_date between '01/01/2017' and '01/03/2017'
- Given to FileFormat via filters
- For benchmark, filter on a sorted column

Predicate Pushdown

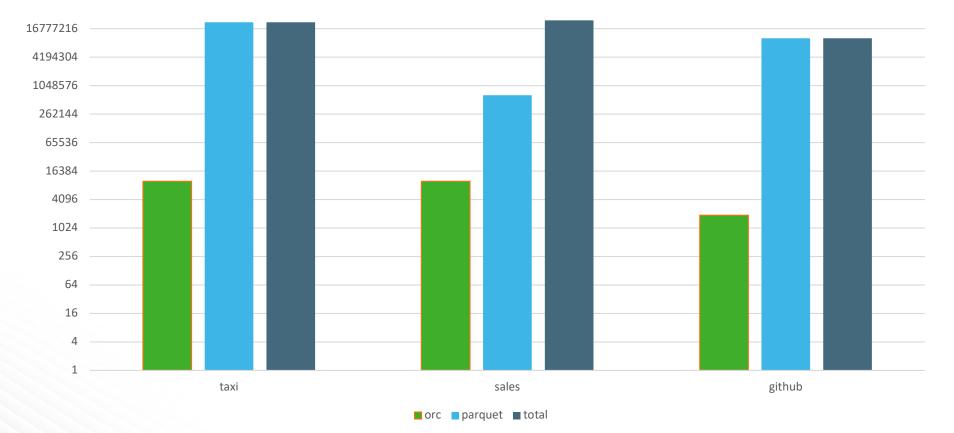
ORC & Parquet indexes with min & max —Sorted data is critical!

ORC has optional bloom filters

- Reader filters out sections of file
 - Entire file
 - Stripe
 - Row group (only ORC, default 10k rows)
- Engine needs to apply row level filter

HORTONWORKS

Predicate Pushdown Rows



HORTONWORKS

Predicate Pushdown

- Parquet doesn't pushdown timestamp filters

 Taxi and Github filters were on timestamps.
- Spark defaults ORC predicate pushdown off.
- Small ORC stripes for Github lead to sub-10k row read.
- Because predicate pushdown is an optimization, it isn't clear when it isn't used.

Metadata Access

ORC & Parquet store metadata

- -Stored in file footer
- -File schema
- -Number of records
- -Min, max, count of each column

Provides O(1) Access

Conclusions

Recommendations

Disclaimer – Everything changes!

-Both these benchmarks and the formats will change.

Evaluate needs

- –Column projection and predicate pushdown are only in ORC & Parquet
- Determine how to sort data
- -Are bloom filters useful?

Thank you!

Twitter: @owen_omalley Email: owen@hortonworks.com

